
Find the value of the integral function $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
A. $\dfrac{1}{4}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
B. $\dfrac{1}{2}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
C. $\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
D. $\dfrac{1}{2}\log \left| {1 - \tan \dfrac{x}{2}} \right| + C$
Answer
186k+ views
Hint: In this case, we must apply the $\sin x$ and $\cos x$ trigonometric formulas in the form of $\tan x$. By substituting $x$ with $\dfrac{x}{2}$ and modifying the changes to the trigonometric identity and the $\cos 2x$ and $\sin 2x$ formulas. Finally, we must use the basic integration formula to determine the value.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

Electron Gain Enthalpy vs Electron Affinity: Key Differences, Trends & Table

JEE Main 2022 June 24 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

Centre of Mass of Semicircular Ring: Formula, Derivation & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Displacement and Velocity-Time Graphs: Concepts, Differences & Application

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Collision: Meaning, Types & Examples in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to a Uniformly Charged Ring Explained

Average and RMS Value in Physics: Formula, Comparison & Application
