
Find the value of the integral function $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
A. $\dfrac{1}{4}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
B. $\dfrac{1}{2}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
C. $\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
D. $\dfrac{1}{2}\log \left| {1 - \tan \dfrac{x}{2}} \right| + C$
Answer
216k+ views
Hint: In this case, we must apply the $\sin x$ and $\cos x$ trigonometric formulas in the form of $\tan x$. By substituting $x$ with $\dfrac{x}{2}$ and modifying the changes to the trigonometric identity and the $\cos 2x$ and $\sin 2x$ formulas. Finally, we must use the basic integration formula to determine the value.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

