
Find the value of \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
A. \[\dfrac{1}{8}\]
B. \[\dfrac{1}{{16}}\]
C. \[\dfrac{1}{{32}}\]
D. \[\dfrac{1}{{64}}\]
Answer
164.4k+ views
Hint:First, rewrite the terms of the given trigonometric expression by using the various trigonometric identities of the complementary and supplementary angles. Then by using the double angle formula \[2\sin\theta \cos\theta = \sin2\theta \] solve the equation and get the required answer.
Formula used:
\[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]
\[\sin\left( {\pi - \theta } \right) = \sin\theta \]
\[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[\cos\left( {\dfrac{\pi }{2} - \theta } \right) = \sin\theta \]
\[\cos\left( {\pi - \theta } \right) = - \cos\theta \]
\[2\sin\theta \cos\theta = \sin2\theta \]
Complete step by step solution:
The given trigonometric expression is \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
Let \[V\] be the value of the expression.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\]
Let’s simplify the above equation.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{\pi }{2}\sin\left( {\pi - \dfrac{{5\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{{3\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{\pi }{{14}}} \right)\]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\left( 1 \right)\sin\left( {\dfrac{{5\pi }}{{14}}} \right)\sin\left( {\dfrac{{3\pi }}{{14}}} \right)\sin\left( {\dfrac{\pi }{{14}}} \right)\] [since \[\sin\dfrac{\pi }{2} = 1\] and \[\sin\left( {\pi - \theta } \right) = \sin\theta \]]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{\pi }{{14}}\]
\[ \Rightarrow \]\[V = {\left[ {\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}} \right]^2}\]
Further simplify the above equation.
\[V = {\left[ {\sin\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\dfrac{{3\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\pi - \dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \cos\left( {\dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\cos\left( {\pi - \theta } \right) = - \cos\theta \]]
Let's consider \[\dfrac{\pi }{7} = \theta \].
Then,
\[V = {\left[ { - \cos\left( x \right)\cos\left( {2x} \right)\cos\left( {4x} \right)} \right]^2}\]
Multiply and divide the right-hand side of the above expression by \[2\sin x\].
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\left( {2\sin x cosx} \right)\cos2x \cos4x} \right]^2}\]
Simplify the equation.
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\sin2x\cos2x\cos4x} \right]^2}\] [since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\left( {2\sin2x\cos2x} \right) \cos4x} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\sin4x\cos4x} \right]^2}\] [ Since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {2\sin4x\cos4x} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {\sin8x} \right)} \right]^2}\]
Now simplify the above equation.
Resubstitute the value of \[x\].
\[V = {\left[ { - \dfrac{1}{{8\sin\dfrac{\pi }{7}}}\left( {\sin\dfrac{{8\pi }}{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\sin\left( {\pi + \dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Now apply the identity \[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\left( { - \sin\dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{8}\left( { - 1} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\dfrac{1}{8}} \right]^2}\]
\[ \Rightarrow \]\[V = \dfrac{1}{{64}}\]
Hence the correct option is D.
Note: The cofunction identities describe the relationship between trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant. The value of a trigonometric function of an angle equals the value of the conjunction of the complement.
Formula used:
\[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]
\[\sin\left( {\pi - \theta } \right) = \sin\theta \]
\[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[\cos\left( {\dfrac{\pi }{2} - \theta } \right) = \sin\theta \]
\[\cos\left( {\pi - \theta } \right) = - \cos\theta \]
\[2\sin\theta \cos\theta = \sin2\theta \]
Complete step by step solution:
The given trigonometric expression is \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
Let \[V\] be the value of the expression.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\]
Let’s simplify the above equation.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{\pi }{2}\sin\left( {\pi - \dfrac{{5\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{{3\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{\pi }{{14}}} \right)\]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\left( 1 \right)\sin\left( {\dfrac{{5\pi }}{{14}}} \right)\sin\left( {\dfrac{{3\pi }}{{14}}} \right)\sin\left( {\dfrac{\pi }{{14}}} \right)\] [since \[\sin\dfrac{\pi }{2} = 1\] and \[\sin\left( {\pi - \theta } \right) = \sin\theta \]]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{\pi }{{14}}\]
\[ \Rightarrow \]\[V = {\left[ {\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}} \right]^2}\]
Further simplify the above equation.
\[V = {\left[ {\sin\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\dfrac{{3\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\pi - \dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \cos\left( {\dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\cos\left( {\pi - \theta } \right) = - \cos\theta \]]
Let's consider \[\dfrac{\pi }{7} = \theta \].
Then,
\[V = {\left[ { - \cos\left( x \right)\cos\left( {2x} \right)\cos\left( {4x} \right)} \right]^2}\]
Multiply and divide the right-hand side of the above expression by \[2\sin x\].
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\left( {2\sin x cosx} \right)\cos2x \cos4x} \right]^2}\]
Simplify the equation.
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\sin2x\cos2x\cos4x} \right]^2}\] [since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\left( {2\sin2x\cos2x} \right) \cos4x} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\sin4x\cos4x} \right]^2}\] [ Since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {2\sin4x\cos4x} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {\sin8x} \right)} \right]^2}\]
Now simplify the above equation.
Resubstitute the value of \[x\].
\[V = {\left[ { - \dfrac{1}{{8\sin\dfrac{\pi }{7}}}\left( {\sin\dfrac{{8\pi }}{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\sin\left( {\pi + \dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Now apply the identity \[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\left( { - \sin\dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{8}\left( { - 1} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\dfrac{1}{8}} \right]^2}\]
\[ \Rightarrow \]\[V = \dfrac{1}{{64}}\]
Hence the correct option is D.
Note: The cofunction identities describe the relationship between trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant. The value of a trigonometric function of an angle equals the value of the conjunction of the complement.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
