
Find the value of \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
A. \[\dfrac{1}{8}\]
B. \[\dfrac{1}{{16}}\]
C. \[\dfrac{1}{{32}}\]
D. \[\dfrac{1}{{64}}\]
Answer
232.5k+ views
Hint:First, rewrite the terms of the given trigonometric expression by using the various trigonometric identities of the complementary and supplementary angles. Then by using the double angle formula \[2\sin\theta \cos\theta = \sin2\theta \] solve the equation and get the required answer.
Formula used:
\[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]
\[\sin\left( {\pi - \theta } \right) = \sin\theta \]
\[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[\cos\left( {\dfrac{\pi }{2} - \theta } \right) = \sin\theta \]
\[\cos\left( {\pi - \theta } \right) = - \cos\theta \]
\[2\sin\theta \cos\theta = \sin2\theta \]
Complete step by step solution:
The given trigonometric expression is \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
Let \[V\] be the value of the expression.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\]
Let’s simplify the above equation.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{\pi }{2}\sin\left( {\pi - \dfrac{{5\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{{3\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{\pi }{{14}}} \right)\]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\left( 1 \right)\sin\left( {\dfrac{{5\pi }}{{14}}} \right)\sin\left( {\dfrac{{3\pi }}{{14}}} \right)\sin\left( {\dfrac{\pi }{{14}}} \right)\] [since \[\sin\dfrac{\pi }{2} = 1\] and \[\sin\left( {\pi - \theta } \right) = \sin\theta \]]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{\pi }{{14}}\]
\[ \Rightarrow \]\[V = {\left[ {\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}} \right]^2}\]
Further simplify the above equation.
\[V = {\left[ {\sin\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\dfrac{{3\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\pi - \dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \cos\left( {\dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\cos\left( {\pi - \theta } \right) = - \cos\theta \]]
Let's consider \[\dfrac{\pi }{7} = \theta \].
Then,
\[V = {\left[ { - \cos\left( x \right)\cos\left( {2x} \right)\cos\left( {4x} \right)} \right]^2}\]
Multiply and divide the right-hand side of the above expression by \[2\sin x\].
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\left( {2\sin x cosx} \right)\cos2x \cos4x} \right]^2}\]
Simplify the equation.
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\sin2x\cos2x\cos4x} \right]^2}\] [since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\left( {2\sin2x\cos2x} \right) \cos4x} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\sin4x\cos4x} \right]^2}\] [ Since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {2\sin4x\cos4x} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {\sin8x} \right)} \right]^2}\]
Now simplify the above equation.
Resubstitute the value of \[x\].
\[V = {\left[ { - \dfrac{1}{{8\sin\dfrac{\pi }{7}}}\left( {\sin\dfrac{{8\pi }}{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\sin\left( {\pi + \dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Now apply the identity \[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\left( { - \sin\dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{8}\left( { - 1} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\dfrac{1}{8}} \right]^2}\]
\[ \Rightarrow \]\[V = \dfrac{1}{{64}}\]
Hence the correct option is D.
Note: The cofunction identities describe the relationship between trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant. The value of a trigonometric function of an angle equals the value of the conjunction of the complement.
Formula used:
\[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]
\[\sin\left( {\pi - \theta } \right) = \sin\theta \]
\[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[\cos\left( {\dfrac{\pi }{2} - \theta } \right) = \sin\theta \]
\[\cos\left( {\pi - \theta } \right) = - \cos\theta \]
\[2\sin\theta \cos\theta = \sin2\theta \]
Complete step by step solution:
The given trigonometric expression is \[\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\].
Let \[V\] be the value of the expression.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{7\pi }}{{14}}\sin\dfrac{{9\pi }}{{14}}\sin\dfrac{{11\pi }}{{14}}\sin\dfrac{{13\pi }}{{14}}\]
Let’s simplify the above equation.
\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{\pi }{2}\sin\left( {\pi - \dfrac{{5\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{{3\pi }}{{14}}} \right)\sin\left( {\pi - \dfrac{\pi }{{14}}} \right)\]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\left( 1 \right)\sin\left( {\dfrac{{5\pi }}{{14}}} \right)\sin\left( {\dfrac{{3\pi }}{{14}}} \right)\sin\left( {\dfrac{\pi }{{14}}} \right)\] [since \[\sin\dfrac{\pi }{2} = 1\] and \[\sin\left( {\pi - \theta } \right) = \sin\theta \]]
\[ \Rightarrow \]\[V = \sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{\pi }{{14}}\]
\[ \Rightarrow \]\[V = {\left[ {\sin\dfrac{\pi }{{14}}\sin\dfrac{{3\pi }}{{14}}\sin\dfrac{{5\pi }}{{14}}} \right]^2}\]
Further simplify the above equation.
\[V = {\left[ {\sin\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{7}} \right)\sin\left( {\dfrac{\pi }{2} - \dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\dfrac{{3\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\sin\left( {\dfrac{\pi }{2} - \theta } \right) = \cos\theta \]]
\[ \Rightarrow \]\[V = {\left[ {\cos\left( {\pi - \dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \cos\left( {\dfrac{{4\pi }}{7}} \right)\cos\left( {\dfrac{{2\pi }}{7}} \right)\cos\left( {\dfrac{\pi }{7}} \right)} \right]^2}\] [since \[\cos\left( {\pi - \theta } \right) = - \cos\theta \]]
Let's consider \[\dfrac{\pi }{7} = \theta \].
Then,
\[V = {\left[ { - \cos\left( x \right)\cos\left( {2x} \right)\cos\left( {4x} \right)} \right]^2}\]
Multiply and divide the right-hand side of the above expression by \[2\sin x\].
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\left( {2\sin x cosx} \right)\cos2x \cos4x} \right]^2}\]
Simplify the equation.
\[V = {\left[ { - \dfrac{1}{{2\sin x}}\sin2x\cos2x\cos4x} \right]^2}\] [since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\left( {2\sin2x\cos2x} \right) \cos4x} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{{4\sin x}}\sin4x\cos4x} \right]^2}\] [ Since \[2\sin\theta \cos\theta = \sin2\theta \]]
Multiply and divide the right-hand side of the above expression by 2.
\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {2\sin4x\cos4x} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{{8\sin x}}\left( {\sin8x} \right)} \right]^2}\]
Now simplify the above equation.
Resubstitute the value of \[x\].
\[V = {\left[ { - \dfrac{1}{{8\sin\dfrac{\pi }{7}}}\left( {\sin\dfrac{{8\pi }}{7}} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\sin\left( {\pi + \dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Now apply the identity \[\sin\left( {\pi + \theta } \right) = - \sin\theta \]
\[V = {\left[ { - \dfrac{1}{8}\left( {\dfrac{1}{{\sin\dfrac{\pi }{7}}}\left( { - \sin\dfrac{\pi }{7}} \right)} \right)} \right]^2}\]
Simplify the above equation.
\[V = {\left[ { - \dfrac{1}{8}\left( { - 1} \right)} \right]^2}\]
\[ \Rightarrow \]\[V = {\left[ {\dfrac{1}{8}} \right]^2}\]
\[ \Rightarrow \]\[V = \dfrac{1}{{64}}\]
Hence the correct option is D.
Note: The cofunction identities describe the relationship between trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant. The value of a trigonometric function of an angle equals the value of the conjunction of the complement.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

