
Find the value of \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \]
A. \[ - 1\]
B. \[0\]
C. \[1\]
D. None of these
Answer
217.2k+ views
Hint: We use the L’ Hospital rule to solve this question. L’ Hospital rule states that if \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x = a\] plugs in, then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
To compute the limit, all we have to do is take the derivative of the numerator as well as the denominator.
Formula used:
We have been using the following formula:
1. \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
2. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
3. \[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
Complete step-by-step solution:
Now we have been given that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}}\]
Now, by applying the L'Hospital rule, as the given problem is in indeterminate form
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]'}}{{\left[ {x - \sin x} \right]'}}\]
By taking a derivative, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{\sin x}}\cos x}}{{1 - \cos x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - \left( {{e^{\sin x}}\left( { - \sin x} \right) + {e^{sinx}}\cos x\cos x} \right)}}{{0 - \left( { - \sin x} \right)}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}} \cdot \sin x - {{\cos }^2}x{e^{\sin x}}}}{{\sin x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}}\cos x + \sin x \cdot {e^{\sin x}} - {{\cos }^2}x{e^{\sin x}}{{cos x - 2\cos x\left( { - \sin x} \right){e^{\sin x}}}}}}{{\cos x}} \\
\]
By applying the limit, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \dfrac{{{e^0} + {e^0} \times 1 + 0 \cdot {e^0} \cdot 1 - {1^2} \cdot {e^0} \cdot 1 - 2 \cdot 1\left( { - 0} \right){e^0}}}{1} \\
= 1 + 1 - 1\left( {\because {e^0} = 1} \right) \\
= 1 \\
\]
Hence, option (C) is the correct option
Additional information:When computing sums on limits, a stalemate can occur when the numerator and denominator of the limit produce a \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\]. An indeterminate form is what it's termed. In this scenario, a way out is to continue computing the limit by differentiating both the numerator and the denominator until the numerator and denominator no longer provide the indeterminate form. The L-Hospital rule is the method of taking derivatives of the numerator and denominator of a limit and it can be used many times.
Note: Students must remember the condition of the L'Hospital rule, which states that a fraction must be of two functions and the function must be indeterminate, and they can only use this method directly if the limit problem is not indeterminate.
To compute the limit, all we have to do is take the derivative of the numerator as well as the denominator.
Formula used:
We have been using the following formula:
1. \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
2. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
3. \[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
Complete step-by-step solution:
Now we have been given that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}}\]
Now, by applying the L'Hospital rule, as the given problem is in indeterminate form
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]'}}{{\left[ {x - \sin x} \right]'}}\]
By taking a derivative, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{\sin x}}\cos x}}{{1 - \cos x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - \left( {{e^{\sin x}}\left( { - \sin x} \right) + {e^{sinx}}\cos x\cos x} \right)}}{{0 - \left( { - \sin x} \right)}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}} \cdot \sin x - {{\cos }^2}x{e^{\sin x}}}}{{\sin x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}}\cos x + \sin x \cdot {e^{\sin x}} - {{\cos }^2}x{e^{\sin x}}{{cos x - 2\cos x\left( { - \sin x} \right){e^{\sin x}}}}}}{{\cos x}} \\
\]
By applying the limit, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \dfrac{{{e^0} + {e^0} \times 1 + 0 \cdot {e^0} \cdot 1 - {1^2} \cdot {e^0} \cdot 1 - 2 \cdot 1\left( { - 0} \right){e^0}}}{1} \\
= 1 + 1 - 1\left( {\because {e^0} = 1} \right) \\
= 1 \\
\]
Hence, option (C) is the correct option
Additional information:When computing sums on limits, a stalemate can occur when the numerator and denominator of the limit produce a \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\]. An indeterminate form is what it's termed. In this scenario, a way out is to continue computing the limit by differentiating both the numerator and the denominator until the numerator and denominator no longer provide the indeterminate form. The L-Hospital rule is the method of taking derivatives of the numerator and denominator of a limit and it can be used many times.
Note: Students must remember the condition of the L'Hospital rule, which states that a fraction must be of two functions and the function must be indeterminate, and they can only use this method directly if the limit problem is not indeterminate.
Recently Updated Pages
Differential Equations: Basics, Types & Solutions Explained

Functional Equations Explained: Key Concepts & Practice

Graphical Methods of Vector Addition Explained Simply

Geometry of Complex Numbers Explained

Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

