
Find the value of \[\int\limits_{\rm{5}}^{{\rm{10}}} {\dfrac{{\rm{1}}}{{\left[ {\left( {{\rm{x - 1}}} \right)\left( {{\rm{x - 2}}} \right)} \right]}}{\rm{dx}}} \] .
A. \[\log \left( {\dfrac{{27}}{{32}}} \right)\]
B. \[\log \left( {\dfrac{{32}}{{27}}} \right)\]
C. \[\log \left( {\dfrac{8}{9}} \right)\]
D. \[\log \left( {\dfrac{3}{4}} \right)\]
Answer
162.9k+ views
Hint: Convert the given integral into partial fraction and then find the value of given variables and then substitute the values into the partial integral and then solve the integral further.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
