
Find the value of \[\int\limits_{\rm{5}}^{{\rm{10}}} {\dfrac{{\rm{1}}}{{\left[ {\left( {{\rm{x - 1}}} \right)\left( {{\rm{x - 2}}} \right)} \right]}}{\rm{dx}}} \] .
A. \[\log \left( {\dfrac{{27}}{{32}}} \right)\]
B. \[\log \left( {\dfrac{{32}}{{27}}} \right)\]
C. \[\log \left( {\dfrac{8}{9}} \right)\]
D. \[\log \left( {\dfrac{3}{4}} \right)\]
Answer
216.3k+ views
Hint: Convert the given integral into partial fraction and then find the value of given variables and then substitute the values into the partial integral and then solve the integral further.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

