
Find the value of \[\int\limits_{\rm{5}}^{{\rm{10}}} {\dfrac{{\rm{1}}}{{\left[ {\left( {{\rm{x - 1}}} \right)\left( {{\rm{x - 2}}} \right)} \right]}}{\rm{dx}}} \] .
A. \[\log \left( {\dfrac{{27}}{{32}}} \right)\]
B. \[\log \left( {\dfrac{{32}}{{27}}} \right)\]
C. \[\log \left( {\dfrac{8}{9}} \right)\]
D. \[\log \left( {\dfrac{3}{4}} \right)\]
Answer
232.8k+ views
Hint: Convert the given integral into partial fraction and then find the value of given variables and then substitute the values into the partial integral and then solve the integral further.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

