
Find the value of \[\int\limits_{\rm{5}}^{{\rm{10}}} {\dfrac{{\rm{1}}}{{\left[ {\left( {{\rm{x - 1}}} \right)\left( {{\rm{x - 2}}} \right)} \right]}}{\rm{dx}}} \] .
A. \[\log \left( {\dfrac{{27}}{{32}}} \right)\]
B. \[\log \left( {\dfrac{{32}}{{27}}} \right)\]
C. \[\log \left( {\dfrac{8}{9}} \right)\]
D. \[\log \left( {\dfrac{3}{4}} \right)\]
Answer
164.4k+ views
Hint: Convert the given integral into partial fraction and then find the value of given variables and then substitute the values into the partial integral and then solve the integral further.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Formula used:
\[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Logarithm formula, \[\ln a - \ln b = \ln \dfrac{a}{b}\]
Complete step by step solution:
The given integral is, \[\int\limits_5^{10} {\dfrac{{dx}}{{\left[ {\left( {x - 1} \right)\left( {x - 2} \right)} \right]}}} \]
Now, Converting the expression into partial fractions, we have:
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{A}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{B}{{x - 2}}\]
Where A and B are arbitrary constants,
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{A\left( {x - 2} \right) + B\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[\dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{Ax - 2A + Bx - B}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\]
\[1 = Ax - 2A + Bx - B\]
\[1 = Ax + Bx - 2A - B\]
\[1 = (A + B)X + ( - 2A - B)\]
\[1 = (A + B)X + ( - 2A - B)\]
\[0 \cdot x + 1 = (A + B)X + ( - 2A - B)\]
Comparing both sides and we get:
\[A{\rm{ }} + {\rm{ }}B{\rm{ }} = {\rm{ }}0\]………………… (1)
\[ - 2A{\rm{ }} - {\rm{ }}B{\rm{ }} = 1\]………………………… (2)
Solving (1) and (2), We get:
\[A = {\rm{ }} - 1,B{\rm{ }} = 1\]
Further, putting the value of A and B, we get:
\[I{\rm{ }} = {\rm{ }}\int\limits_5^{10} {\left( {\dfrac{{ - 1}}{{x - 1}}{\rm{ }} + {\rm{ }}\dfrac{1}{{x - 2}}} \right)} dx\]
We know that, \[\int\limits_a^b {\left[ {f(x) + f(y)} \right]} = \int\limits_a^b {f(x) + \int\limits_a^b {f(y)} } \]
Now,
\[ = {\rm{ }}[ - \ln (x - 1){\rm{ }} + {\rm{ }}\ln (x - 2)]_5^{10}\]
\[ = {\rm{ }}\left[ {\ln \dfrac{{\left( {x - 2} \right)}}{{\left( {x - 1} \right)}}} \right]_5^{10}\]
\[ = \left[ {\ln \left( {\dfrac{{10 - 2}}{{10 - 1}}} \right) - \ln \left( {\dfrac{{5 - 2}}{{5 - 1}}} \right)} \right]\]
\[ = \ln \dfrac{8}{9} - \ln \dfrac{3}{4}\]
\[ = \ln \dfrac{{32}}{{27}}\]
The correct answer is option B.
Note Sometimes students make mistakes while starting with the integral as they start integration direct without breaking it into parts. This leads to a complex expression.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
