
Find the value of \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
A. \[31\]
B. \[22\]
C. \[23\]
D. None of these
Answer
162.6k+ views
Hint: Here, a definite integral is given. The function present in the integral is a greatest integer function. First, find the squares present in the given interval and based on that break the interval. Then, calculate the values of the greatest integer function using the interval. After that, split the integrals and solve them using the integration formula. In the end, apply the limits and solve them to get the required answer.
Formula Used:Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
The interval of the given integral is \[\left[ {0,9} \right]\]. The squares present in this interval are \[1,4\] and \[9\].
To split the given integral, find out the different values of the function in that interval.
In the interval \[0 \le x < 1\] :
\[2 \le \sqrt x + 2 < 3\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 2\]
In the interval \[1 \le x < 4\] :
\[3 \le \sqrt x + 2 < 4\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 3\]
In the interval \[4 \le x < 9\] :
\[4 \le \sqrt x + 2 < 5\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 4\]
Now using the above intervals and its values split the given integral.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \int\limits_0^1 {2dx} + \int\limits_1^4 {3dx} + \int\limits_4^9 {4dx} \]
Solve the right-hand side by using the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
We get,
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \left[ {2x} \right]_0^1 + \left[ {3x} \right]_1^4 + \left[ {4x} \right]_4^9\]
Apply the upper and lower limits.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( {1 - 0} \right) + 3\left( {4 - 1} \right) + 4\left( {9 - 4} \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( 1 \right) + 3\left( 3 \right) + 4\left( 5 \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2 + 9 + 20\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 31\]
Option ‘A’ is correct
Note: Students often get confused while calculating the value of the greatest integer function of the given function \[\left[ {\sqrt x + 2} \right]\].
To calculate the value, substitute the least value of that interval in the given function and solve it. The obtained value is the value of the function for the corresponding interval.
Formula Used:Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
The interval of the given integral is \[\left[ {0,9} \right]\]. The squares present in this interval are \[1,4\] and \[9\].
To split the given integral, find out the different values of the function in that interval.
In the interval \[0 \le x < 1\] :
\[2 \le \sqrt x + 2 < 3\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 2\]
In the interval \[1 \le x < 4\] :
\[3 \le \sqrt x + 2 < 4\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 3\]
In the interval \[4 \le x < 9\] :
\[4 \le \sqrt x + 2 < 5\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 4\]
Now using the above intervals and its values split the given integral.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \int\limits_0^1 {2dx} + \int\limits_1^4 {3dx} + \int\limits_4^9 {4dx} \]
Solve the right-hand side by using the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
We get,
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \left[ {2x} \right]_0^1 + \left[ {3x} \right]_1^4 + \left[ {4x} \right]_4^9\]
Apply the upper and lower limits.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( {1 - 0} \right) + 3\left( {4 - 1} \right) + 4\left( {9 - 4} \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( 1 \right) + 3\left( 3 \right) + 4\left( 5 \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2 + 9 + 20\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 31\]
Option ‘A’ is correct
Note: Students often get confused while calculating the value of the greatest integer function of the given function \[\left[ {\sqrt x + 2} \right]\].
To calculate the value, substitute the least value of that interval in the given function and solve it. The obtained value is the value of the function for the corresponding interval.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
