
Find the value of \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
A. \[31\]
B. \[22\]
C. \[23\]
D. None of these
Answer
216k+ views
Hint: Here, a definite integral is given. The function present in the integral is a greatest integer function. First, find the squares present in the given interval and based on that break the interval. Then, calculate the values of the greatest integer function using the interval. After that, split the integrals and solve them using the integration formula. In the end, apply the limits and solve them to get the required answer.
Formula Used:Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
The interval of the given integral is \[\left[ {0,9} \right]\]. The squares present in this interval are \[1,4\] and \[9\].
To split the given integral, find out the different values of the function in that interval.
In the interval \[0 \le x < 1\] :
\[2 \le \sqrt x + 2 < 3\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 2\]
In the interval \[1 \le x < 4\] :
\[3 \le \sqrt x + 2 < 4\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 3\]
In the interval \[4 \le x < 9\] :
\[4 \le \sqrt x + 2 < 5\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 4\]
Now using the above intervals and its values split the given integral.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \int\limits_0^1 {2dx} + \int\limits_1^4 {3dx} + \int\limits_4^9 {4dx} \]
Solve the right-hand side by using the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
We get,
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \left[ {2x} \right]_0^1 + \left[ {3x} \right]_1^4 + \left[ {4x} \right]_4^9\]
Apply the upper and lower limits.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( {1 - 0} \right) + 3\left( {4 - 1} \right) + 4\left( {9 - 4} \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( 1 \right) + 3\left( 3 \right) + 4\left( 5 \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2 + 9 + 20\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 31\]
Option ‘A’ is correct
Note: Students often get confused while calculating the value of the greatest integer function of the given function \[\left[ {\sqrt x + 2} \right]\].
To calculate the value, substitute the least value of that interval in the given function and solve it. The obtained value is the value of the function for the corresponding interval.
Formula Used:Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
\[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} \], where \[\left[ . \right]\] is the greatest integer function.
The interval of the given integral is \[\left[ {0,9} \right]\]. The squares present in this interval are \[1,4\] and \[9\].
To split the given integral, find out the different values of the function in that interval.
In the interval \[0 \le x < 1\] :
\[2 \le \sqrt x + 2 < 3\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 2\]
In the interval \[1 \le x < 4\] :
\[3 \le \sqrt x + 2 < 4\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 3\]
In the interval \[4 \le x < 9\] :
\[4 \le \sqrt x + 2 < 5\]
Apply the greatest integer function \[\left[ x \right] = n\], where \[n \le x < n + 1\] .
We get, \[\left[ {\sqrt x + 2} \right] = 4\]
Now using the above intervals and its values split the given integral.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \int\limits_0^1 {2dx} + \int\limits_1^4 {3dx} + \int\limits_4^9 {4dx} \]
Solve the right-hand side by using the integration formula \[\int\limits_a^b {ndx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
We get,
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = \left[ {2x} \right]_0^1 + \left[ {3x} \right]_1^4 + \left[ {4x} \right]_4^9\]
Apply the upper and lower limits.
\[\int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( {1 - 0} \right) + 3\left( {4 - 1} \right) + 4\left( {9 - 4} \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2\left( 1 \right) + 3\left( 3 \right) + 4\left( 5 \right)\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 2 + 9 + 20\]
\[ \Rightarrow \int\limits_0^9 {\left[ {\sqrt x + 2} \right]dx} = 31\]
Option ‘A’ is correct
Note: Students often get confused while calculating the value of the greatest integer function of the given function \[\left[ {\sqrt x + 2} \right]\].
To calculate the value, substitute the least value of that interval in the given function and solve it. The obtained value is the value of the function for the corresponding interval.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

