
Find the value of integral \[\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx} \]
(a) \[\dfrac{\pi }{4}\]
(b) \[\dfrac{\pi }{8}\]
(c) \[\dfrac{\pi }{16}\]
(d) \[\dfrac{\pi }{32}\]
Answer
233.1k+ views
Hint: We solve this problem by using the simple formulas of trigonometry.
First, we regroup the terms in the integral in such a way that the odd times of \['x'\] at one side and the even times of \['x'\] at one side.
Then we use the formula of composite angles of sine ratio that is
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]
Also we use the formula of composite angle of cosine ratio that is
\[2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\]
We also have the formula of half angle for cosine ratio that is
\[{{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
After applying the required formulas we get the integral as the individual terms of cosine ratio then we use the direct formula of definite integration that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
Complete step-by-step solution
We are given that the integral as \[\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}\]
Let us assume that the given integral as
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}\]
Now, let us regroup the terms in such a way that the odd times of \['x'\] at one side and the even times of \['x'\] at one side then we get
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \sin x.\sin 3x \right)\left( \sin 2x.\sin 4x \right)dx}\]
We know that the formula of composite angle of sine ratio that is
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \left( 3x-x \right)-\cos \left( 3x+x \right)}{2} \right)\left( \dfrac{\cos \left( 4x-2x \right)-\cos \left( 4x+2x \right)}{2} \right)dx} \\
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 2x-\cos 4x \right)\left( \cos 2x-\cos 6x \right)dx} \\
\end{align}\]
Now, by multiplying the terms in above equation we get
\[\Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}2x-\cos 2x\cos 6x-\cos 2x\cos 4x+\cos 4x\cos 6x \right)dx}.....equation(i)\]
We know that the half angle formula of cosine ratio that is
\[{{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
We also know that the composite angle formula for the cosine ratio that is
\[2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\]
Now, by using the above two formulas to equation (i) we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1+\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}-\dfrac{\cos 2x}{2}+\dfrac{\cos 10x}{2}+\dfrac{\cos 2x}{2} \right)dx} \\
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{2}+\dfrac{\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}+\dfrac{\cos 10x}{2} \right)dx} \\
\end{align}\]
Now, let us separate the integral for each and every term in the above equation we get
\[\Rightarrow I=\dfrac{1}{4}\left[ \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1}{2}.dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos 4x}{2}.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 8x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 4x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 6x.dx}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 10x.dx} \right]\]
We know that the standard result of definite integrals that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
\[\int\limits_{a}^{b}{dx}=b-a\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left[ \dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)+\left( \dfrac{1}{2}\times 0 \right) \right] \\
& \Rightarrow I=\dfrac{\pi }{16} \\
\end{align}\]
Therefore the value of given integral is
\[\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}=\dfrac{\pi }{16}\]
So, option (c) is the correct answer.
Note: Here we used the direct result for the definite integral that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
If we cannot remember this we can prove this by using the integration.
Let us assume that
\[A=\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}\]
We know that the formula for the integration that is
\[\int{\cos nx.dx}=\dfrac{1}{n}\sin nx\]
So, by using this formula we get
\[\Rightarrow A=\dfrac{1}{n}\left[ \sin nx \right]_{0}^{\dfrac{\pi }{2}}\]
Now, by applying the limits we get
\[\begin{align}
& \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2}-\dfrac{1}{n}\sin 0 \\
& \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2} \\
\end{align}\]
Here we can see if \['n'\] is even we can say that the value of \[\dfrac{n\pi }{2}\] will be the multiple of \[\pi \]
We know that the sine ratio for integral multiples of \[\pi \] will be 0 that is
\[\Rightarrow \sin k\pi =0\] where, \['k'\] is an integer.
But we cannot say anything when \['n'\] is odd.
Therefore we can write that
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
We can directly use this in the problems as we did in this question.
First, we regroup the terms in the integral in such a way that the odd times of \['x'\] at one side and the even times of \['x'\] at one side.
Then we use the formula of composite angles of sine ratio that is
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]
Also we use the formula of composite angle of cosine ratio that is
\[2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\]
We also have the formula of half angle for cosine ratio that is
\[{{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
After applying the required formulas we get the integral as the individual terms of cosine ratio then we use the direct formula of definite integration that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
Complete step-by-step solution
We are given that the integral as \[\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}\]
Let us assume that the given integral as
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}\]
Now, let us regroup the terms in such a way that the odd times of \['x'\] at one side and the even times of \['x'\] at one side then we get
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \sin x.\sin 3x \right)\left( \sin 2x.\sin 4x \right)dx}\]
We know that the formula of composite angle of sine ratio that is
\[2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \left( 3x-x \right)-\cos \left( 3x+x \right)}{2} \right)\left( \dfrac{\cos \left( 4x-2x \right)-\cos \left( 4x+2x \right)}{2} \right)dx} \\
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cos 2x-\cos 4x \right)\left( \cos 2x-\cos 6x \right)dx} \\
\end{align}\]
Now, by multiplying the terms in above equation we get
\[\Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\cos }^{2}}2x-\cos 2x\cos 6x-\cos 2x\cos 4x+\cos 4x\cos 6x \right)dx}.....equation(i)\]
We know that the half angle formula of cosine ratio that is
\[{{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
We also know that the composite angle formula for the cosine ratio that is
\[2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)\]
Now, by using the above two formulas to equation (i) we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1+\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}-\dfrac{\cos 2x}{2}+\dfrac{\cos 10x}{2}+\dfrac{\cos 2x}{2} \right)dx} \\
& \Rightarrow I=\dfrac{1}{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{2}+\dfrac{\cos 4x}{2}-\dfrac{\cos 8x}{2}-\dfrac{\cos 4x}{2}-\dfrac{\cos 6x}{2}+\dfrac{\cos 10x}{2} \right)dx} \\
\end{align}\]
Now, let us separate the integral for each and every term in the above equation we get
\[\Rightarrow I=\dfrac{1}{4}\left[ \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1}{2}.dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos 4x}{2}.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 8x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 4x.dx}-\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 6x.dx}+\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\cos 10x.dx} \right]\]
We know that the standard result of definite integrals that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
\[\int\limits_{a}^{b}{dx}=b-a\]
By using this formula to above equation we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left[ \dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)-\left( \dfrac{1}{2}\times 0 \right)+\left( \dfrac{1}{2}\times 0 \right) \right] \\
& \Rightarrow I=\dfrac{\pi }{16} \\
\end{align}\]
Therefore the value of given integral is
\[\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\sin x.\sin 2x.\sin 3x.\sin 4x.dx}=\dfrac{\pi }{16}\]
So, option (c) is the correct answer.
Note: Here we used the direct result for the definite integral that is
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
If we cannot remember this we can prove this by using the integration.
Let us assume that
\[A=\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}\]
We know that the formula for the integration that is
\[\int{\cos nx.dx}=\dfrac{1}{n}\sin nx\]
So, by using this formula we get
\[\Rightarrow A=\dfrac{1}{n}\left[ \sin nx \right]_{0}^{\dfrac{\pi }{2}}\]
Now, by applying the limits we get
\[\begin{align}
& \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2}-\dfrac{1}{n}\sin 0 \\
& \Rightarrow A=\dfrac{1}{n}\sin \dfrac{n\pi }{2} \\
\end{align}\]
Here we can see if \['n'\] is even we can say that the value of \[\dfrac{n\pi }{2}\] will be the multiple of \[\pi \]
We know that the sine ratio for integral multiples of \[\pi \] will be 0 that is
\[\Rightarrow \sin k\pi =0\] where, \['k'\] is an integer.
But we cannot say anything when \['n'\] is odd.
Therefore we can write that
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\cos nx.dx}=\left\{ \begin{align}
& 0,\text{ when }n\text{ is even} \\
& \dfrac{1}{n}\sin \left( \dfrac{n\pi }{2} \right),\text{ when }n\text{ is odd} \\
\end{align} \right.\]
We can directly use this in the problems as we did in this question.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

