
Find the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
A \[\dfrac{\pi }{{12}}\]
B \[\dfrac{\pi }{2}\]
C \[\dfrac{\pi }{6}\]
D \[\dfrac{\pi }{4}\]
Answer
163.5k+ views
Hint: o find the value of the integration first concert the function in integrable form. Then integrate the function and apply the limits.
Formula used: \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integration \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
Consider, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]
Substitute \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \] as follows.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} \]
Now, separate square roots.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Now, simplify the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Take the inverse of the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …(1)
Apply the property to simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} }}} \]
Further write in the following way.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …(2)
Add equation (1) and equation (2)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \]
Now, the equation becomes as follows.
\[\begin{array}{l}2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx} \\2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \end{array}\]
Evaluate the equation.
\[2I = \left[ x \right]_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}\]
Apply the limit. Subtract lower limit from upper limit.
\[2I = \left[ {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right]\]
Simplify the bracket.
\[\begin{array}{l}2I = \left[ {\dfrac{{2\pi }}{6} - \dfrac{\pi }{6}} \right]\\2I = \dfrac{\pi }{6}\end{array}\]
Divide the equation by \[2\] on both sides.
\[I = \dfrac{\pi }{{12}}\]
Hence the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]is \[\dfrac{\pi }{{12}}\].
Thus, Option (A) is correct.
Note: The common mistake made by students is taking integration of \[\sqrt {\tan x} \] and substituting limits to find value of the integration which is the wrong method of finding a solution.
Formula used: \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integration \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
Consider, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]
Substitute \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \] as follows.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} \]
Now, separate square roots.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Now, simplify the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Take the inverse of the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …(1)
Apply the property to simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} }}} \]
Further write in the following way.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …(2)
Add equation (1) and equation (2)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \]
Now, the equation becomes as follows.
\[\begin{array}{l}2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx} \\2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \end{array}\]
Evaluate the equation.
\[2I = \left[ x \right]_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}\]
Apply the limit. Subtract lower limit from upper limit.
\[2I = \left[ {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right]\]
Simplify the bracket.
\[\begin{array}{l}2I = \left[ {\dfrac{{2\pi }}{6} - \dfrac{\pi }{6}} \right]\\2I = \dfrac{\pi }{6}\end{array}\]
Divide the equation by \[2\] on both sides.
\[I = \dfrac{\pi }{{12}}\]
Hence the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]is \[\dfrac{\pi }{{12}}\].
Thus, Option (A) is correct.
Note: The common mistake made by students is taking integration of \[\sqrt {\tan x} \] and substituting limits to find value of the integration which is the wrong method of finding a solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
