
Find the value of \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\].
A. \[\log \left| {\dfrac{{\sin x}}{{1 + \cos x}}} \right| + c\]
B. \[\log \left| {\dfrac{{\sin x}}{{x + \cos x}}} \right| + c\]
C. \[\log \left| {\dfrac{{2\sin x}}{{x + \cos x}}} \right| + c\]
D. \[\log \left| {\dfrac{{x\sin x}}{{x + \cos x}}} \right| + c\]
E. \[\log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Answer
162.9k+ views
Hint: We will break the given integration into two parts. In the first part, the numerator is a factor of the denominator. The second part will be such that the derivative of the denominator is the numerator. Then we will integrate both integrations to get the required value.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
