
Find the value of \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\].
A. \[\log \left| {\dfrac{{\sin x}}{{1 + \cos x}}} \right| + c\]
B. \[\log \left| {\dfrac{{\sin x}}{{x + \cos x}}} \right| + c\]
C. \[\log \left| {\dfrac{{2\sin x}}{{x + \cos x}}} \right| + c\]
D. \[\log \left| {\dfrac{{x\sin x}}{{x + \cos x}}} \right| + c\]
E. \[\log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Answer
216k+ views
Hint: We will break the given integration into two parts. In the first part, the numerator is a factor of the denominator. The second part will be such that the derivative of the denominator is the numerator. Then we will integrate both integrations to get the required value.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

