
Find the value of \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\].
A. \[\log \left| {\dfrac{{\sin x}}{{1 + \cos x}}} \right| + c\]
B. \[\log \left| {\dfrac{{\sin x}}{{x + \cos x}}} \right| + c\]
C. \[\log \left| {\dfrac{{2\sin x}}{{x + \cos x}}} \right| + c\]
D. \[\log \left| {\dfrac{{x\sin x}}{{x + \cos x}}} \right| + c\]
E. \[\log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Answer
233.1k+ views
Hint: We will break the given integration into two parts. In the first part, the numerator is a factor of the denominator. The second part will be such that the derivative of the denominator is the numerator. Then we will integrate both integrations to get the required value.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Formula Used:
Integration formula
\[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
Derivative formula
Power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\]
Derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Quotient law for logarithm: \[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution:
Given integration is \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Let \[I = \int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\]
Now add and subtract \[x\] with the numerator.
\[I = \int {\dfrac{{\cos \,x + x\,\sin \,x + x - x}}{{{x^2} + x\,\cos \,x}}} dx\]
Rewrite the numerator as sum of two expressions
\[I = \int {\dfrac{{\left( {\cos \,x + x} \right) + \left( {x\,\sin \,x - x} \right)}}{{{x^2} + x\,\cos \,x}}} dx\]
Divide the integration into two integrations.
\[I = \int {\dfrac{{\cos \,x + x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x - x}}{{{x^2} + x\,\cos \,x}}dx} \]
Simplify the first and second integrations
\[I = \int {\dfrac{{\cos \,x + x}}{{x\left( {\cos \,x + x} \right)}}} dx + \int {\dfrac{{x\,\left( {\sin \,x - 1} \right)}}{{x\left( {x + \,\cos \,x} \right)}}dx} \]
Cancel out \[\left( {\cos \,x + x} \right)\] from the first integration and \[x\] from the second integration
\[ \Rightarrow I = \int {\dfrac{1}{x}} dx + \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Now let \[{I_1} = \int {\dfrac{1}{x}} dx\] and \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
So, \[I = {I_1} + {I_2}\] …(i)
Apply the formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\] in \[{I_1}\]
\[{I_1} = \int {\dfrac{1}{x}} dx\]
\[ \Rightarrow {I_1} = \log \left| x \right| + {c_1}\] where \[{c_1}\]is an integration constant. …….(ii)
Now we will calculate the value of \[{I_2}\].
\[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \]
Assume that \[x + \cos x = z\]
Differentiate both sides of the above equation
\[\dfrac{d}{{dx}}\left( {x + \cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Break the left side
\[\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\cos x} \right) = \dfrac{d}{{dx}}\left( z \right)\]
Apply the power rule \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and derivative of cosine function\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
\[1 - \sin x = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \left( {1 - \sin x} \right)dx = dz\]
So, \[{I_2} = \int {\dfrac{{\sin x - 1}}{{x + \cos \,x}}dx} \] becomes after substituting \[x + \cos x = z\] and \[\left( {1 - \sin x} \right)dx = dz\]
\[{I_2} = - \int {\dfrac{1}{z}dz} \]
Applying the integration formula \[\int {\dfrac{1}{x}} dx = \log \left| x \right| + c\]
\[{I_2} = - \log \left| z \right| + {c_2}\] where \[{c_2}\]is an integration constant.
Putting the value of \[z\]
\[{I_2} = - \log \left| {x + \cos x} \right| + {c_2}\] …….(iii)
Now putting the value of \[{I_1}\] and \[{I_2}\] in equation (i)
\[I = \log \left| x \right| - \log \left| {x + \cos x} \right| + c\] where \[{c_1} + {c_2} = c\].
Apply the logarithm formula \[\log a - \log b = \log \dfrac{a}{b}\]
\[I = \log \left| {\dfrac{x}{{x + \cos x}}} \right| + c\]
Hence option E is the correct option.
Note: Students often do mistake to solve this type of integration. Instead of adding and subtracting \[x\] with numerator, they directly break it into two parts like \[\int {\dfrac{{\cos \,x + x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx = \int {\dfrac{{\cos \,x}}{{{x^2} + x\,\cos \,x}}} dx + \int {\dfrac{{x\,\sin \,x}}{{{x^2} + x\,\cos \,x}}} dx\] . They are stuck in this place, then unable to solve the integration. Sometimes they forgot the rule of logarithm and were unable to reach the final answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

