
Find the value of $\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}} = $
A. $\tan \left( {A - B} \right)$
B. $\tan \left( {A + B} \right)$
C. $\cot \left( {A - B} \right)$
D. $\cot \left( {A + B} \right)$
Answer
161.7k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then we will simplify it. Next, we will apply trigonometric identities in the equation formed above and simplify it even further to get the desired correct answer.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
