
Find the value of $\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}} = $
A. $\tan \left( {A - B} \right)$
B. $\tan \left( {A + B} \right)$
C. $\cot \left( {A - B} \right)$
D. $\cot \left( {A + B} \right)$
Answer
218.7k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then we will simplify it. Next, we will apply trigonometric identities in the equation formed above and simplify it even further to get the desired correct answer.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

