
Find the value of $\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}} = $
A. $\tan \left( {A - B} \right)$
B. $\tan \left( {A + B} \right)$
C. $\cot \left( {A - B} \right)$
D. $\cot \left( {A + B} \right)$
Answer
163.2k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then we will simplify it. Next, we will apply trigonometric identities in the equation formed above and simplify it even further to get the desired correct answer.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Formula used:
$\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
$\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
Complete step by step solution:
Consider,
$\dfrac{{{{\sin }^2}A - {{\sin }^2}B}}{{\sin A\cos A - \sin B\cos B}}$
$ = \dfrac{{\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin A\cos A - \sin B\cos B}}$ $\left[ {\because {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)} \right]$
Multiply numerator and denominator by $2,$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\sin A\cos A - 2\sin B\cos B}}$
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{\sin 2A - \sin 2B}}$ $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
Simplifying it,
$ = \dfrac{{2\sin \left( {A + B} \right)\sin \left( {A - B} \right)}}{{2\cos \left( {A + B} \right)\sin \left( {A - B} \right)}}$ $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$
$ = \dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}$
$ = \tan \left( {A + B} \right)$ $\left[ {\because \dfrac{{\sin A}}{{\cos A}} = \tan A} \right]$
$\therefore $ The correct option is B.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)} \right]$ and $\left[ {\because \sin A - \sin B = 2\cos \left( {\dfrac{{A - B}}{2}} \right)\sin \left( {\dfrac{{A + B}}{2}} \right)} \right]$. But we need to choose the correct formula.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
