
Find the value of \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\].
A. \[\sin 2A\]
B. \[\cos 2A\]
C. \[\tan 2A\]
D. \[\cot 2A\]
Answer
163.2k+ views
Hint: In this question, we need to find the value of \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]. For this, we have to convert \[\tan \] in terms of \[\sin \] and \[\cos \] first. After that we will get the final result by simplifying it using trigonometric identities.
Formula used: We will use the following trigonometric identities for solving this example.
1. \[\tan A = \dfrac{{sinA}}{{cosA}}\]
2. \[{\sin ^2}A + {\cos ^2}A = 1\]
3. \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
Complete step-by-step answer:
We know that the given expression is \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]
Now, we will simplify the above expression.
First, we will convert tangent terms into sin and cos terms.
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {1 - \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {1 + \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \dfrac{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) - {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) + {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
\]
But we know that \[{\sin ^2}A + {\cos ^2}A = 1\]and \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
By applying these identities, we get
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{1}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right] \times \dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}{1} \\
= \cos \left( {{{90}^ \circ } - 2A} \right) \\
\]
Bu \[\cos \left( {{{90}^ \circ } - 2A} \right) = \sin 2A\]
By applying this identity, we get
\[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \sin 2A\]
Hence, the value of the expression \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]is \[\sin 2A\].
Therefore, the correct option is (A).
Additional Information: Trigonometric Identities are equalities that utilize trigonometry functions and remain true for all values of variables specified in the equation. Trigonometric Identities help a lot when trigonometric functions can be used in an expression or equation. Trigonometric laws hold for all values of variables on both sides of an equation. There are several unique trigonometric identities relating the side length and angle of a triangle. The trigonometric identities are only valid for right-angle triangles. There are several trigonometric identities available to simplify the crucial part of problems.
Note: Many students make mistakes in the simplification part and applying proper trigonometric identity. Complex trigonometric problems can be addressed rapidly using these trigonometric identities or formulae.
Formula used: We will use the following trigonometric identities for solving this example.
1. \[\tan A = \dfrac{{sinA}}{{cosA}}\]
2. \[{\sin ^2}A + {\cos ^2}A = 1\]
3. \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
Complete step-by-step answer:
We know that the given expression is \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]
Now, we will simplify the above expression.
First, we will convert tangent terms into sin and cos terms.
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {1 - \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {1 + \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \dfrac{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) - {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) + {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
\]
But we know that \[{\sin ^2}A + {\cos ^2}A = 1\]and \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
By applying these identities, we get
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{1}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right] \times \dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}{1} \\
= \cos \left( {{{90}^ \circ } - 2A} \right) \\
\]
Bu \[\cos \left( {{{90}^ \circ } - 2A} \right) = \sin 2A\]
By applying this identity, we get
\[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \sin 2A\]
Hence, the value of the expression \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]is \[\sin 2A\].
Therefore, the correct option is (A).
Additional Information: Trigonometric Identities are equalities that utilize trigonometry functions and remain true for all values of variables specified in the equation. Trigonometric Identities help a lot when trigonometric functions can be used in an expression or equation. Trigonometric laws hold for all values of variables on both sides of an equation. There are several unique trigonometric identities relating the side length and angle of a triangle. The trigonometric identities are only valid for right-angle triangles. There are several trigonometric identities available to simplify the crucial part of problems.
Note: Many students make mistakes in the simplification part and applying proper trigonometric identity. Complex trigonometric problems can be addressed rapidly using these trigonometric identities or formulae.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
