
Find the value of \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\].
A. \[\sin 2A\]
B. \[\cos 2A\]
C. \[\tan 2A\]
D. \[\cot 2A\]
Answer
218.7k+ views
Hint: In this question, we need to find the value of \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]. For this, we have to convert \[\tan \] in terms of \[\sin \] and \[\cos \] first. After that we will get the final result by simplifying it using trigonometric identities.
Formula used: We will use the following trigonometric identities for solving this example.
1. \[\tan A = \dfrac{{sinA}}{{cosA}}\]
2. \[{\sin ^2}A + {\cos ^2}A = 1\]
3. \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
Complete step-by-step answer:
We know that the given expression is \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]
Now, we will simplify the above expression.
First, we will convert tangent terms into sin and cos terms.
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {1 - \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {1 + \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \dfrac{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) - {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) + {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
\]
But we know that \[{\sin ^2}A + {\cos ^2}A = 1\]and \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
By applying these identities, we get
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{1}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right] \times \dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}{1} \\
= \cos \left( {{{90}^ \circ } - 2A} \right) \\
\]
Bu \[\cos \left( {{{90}^ \circ } - 2A} \right) = \sin 2A\]
By applying this identity, we get
\[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \sin 2A\]
Hence, the value of the expression \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]is \[\sin 2A\].
Therefore, the correct option is (A).
Additional Information: Trigonometric Identities are equalities that utilize trigonometry functions and remain true for all values of variables specified in the equation. Trigonometric Identities help a lot when trigonometric functions can be used in an expression or equation. Trigonometric laws hold for all values of variables on both sides of an equation. There are several unique trigonometric identities relating the side length and angle of a triangle. The trigonometric identities are only valid for right-angle triangles. There are several trigonometric identities available to simplify the crucial part of problems.
Note: Many students make mistakes in the simplification part and applying proper trigonometric identity. Complex trigonometric problems can be addressed rapidly using these trigonometric identities or formulae.
Formula used: We will use the following trigonometric identities for solving this example.
1. \[\tan A = \dfrac{{sinA}}{{cosA}}\]
2. \[{\sin ^2}A + {\cos ^2}A = 1\]
3. \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
Complete step-by-step answer:
We know that the given expression is \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]
Now, we will simplify the above expression.
First, we will convert tangent terms into sin and cos terms.
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {1 - \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {1 + \dfrac{{{{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \dfrac{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) - {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right) + {{\sin }^2}\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
\]
But we know that \[{\sin ^2}A + {\cos ^2}A = 1\]and \[{\cos ^2}A - {\sin ^2}A = \cos 2A\]
By applying these identities, we get
\[
\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}}{{\left[ {\dfrac{1}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right]}} \\
= \left[ {\dfrac{{\cos 2\left( {{{45}^ \circ } - A} \right)}}{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}} \right] \times \dfrac{{{{\cos }^2}\left( {{{45}^ \circ } - A} \right)}}{1} \\
= \cos \left( {{{90}^ \circ } - 2A} \right) \\
\]
Bu \[\cos \left( {{{90}^ \circ } - 2A} \right) = \sin 2A\]
By applying this identity, we get
\[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}} = \sin 2A\]
Hence, the value of the expression \[\dfrac{{\left[ {1 - {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}{{\left[ {1 + {{\tan }^2}\left( {{{45}^ \circ } - A} \right)} \right]}}\]is \[\sin 2A\].
Therefore, the correct option is (A).
Additional Information: Trigonometric Identities are equalities that utilize trigonometry functions and remain true for all values of variables specified in the equation. Trigonometric Identities help a lot when trigonometric functions can be used in an expression or equation. Trigonometric laws hold for all values of variables on both sides of an equation. There are several unique trigonometric identities relating the side length and angle of a triangle. The trigonometric identities are only valid for right-angle triangles. There are several trigonometric identities available to simplify the crucial part of problems.
Note: Many students make mistakes in the simplification part and applying proper trigonometric identity. Complex trigonometric problems can be addressed rapidly using these trigonometric identities or formulae.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

