
Find the value of \[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \] .
A. \[{\sec ^2}x\]
B. \[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
C. \[{\sec ^2}\left( {\dfrac{\pi }{4} + x} \right)\]
D. \[{\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Answer
232.8k+ views
Hint:
While watching the trigonometric equation inside the square root it looks very complex hence our first step will be to simplify the terms using the basic trigonometric formula and then we will be differentiating the term using chain rule.
Formula Used:
\[\sin 2x = 2\sin x\cos x\],
\[{\cos ^2}x + {\sin ^2}x = 1\] ,
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\],
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Complete step-by-step answer:
By using the Double Angle Property we will solve the trigonometric equation inside square root.
Then \[\sin 2x\] can be written as \[2\sin x\cos x\] .
\[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \]
\[ \Rightarrow \sqrt {\dfrac{{1 - 2\sin x\cos x}}{{1 + 2\sin x\cos x}}} \]
By using the formula \[{\cos ^2}x + {\sin ^2}x = 1\] we will substitute the value of 1 inside the square root.
\[ \Rightarrow \sqrt {\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}} \]
By applying the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] we can simplify the terms.
\[ \Rightarrow \sqrt {\dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{{{\left( {\cos x + \sin x} \right)}^2}}}} \]
\[ \Rightarrow \sqrt {{{\left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)}^2}} \]
\[ \Rightarrow \left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)\]
Dividing Numerator and Denominator both by \[\cos x\] to make the terms more simpler,
\[ \Rightarrow \left( {\dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}} \right)\]
\[ \Rightarrow \left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)\]
According to the property we can write \[1\] as \[\tan \dfrac{\pi }{4}\]
\[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\]
According to the formula \[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\] can be written as \[\tan \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right)\]
We have got the inner trigonometric values in the simplest form and now we will be differentiating it,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
By Applying chain rule we will be differentiating the term.
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Where \[f\left( x \right) = \tan x\] and \[g\left( x \right) = \left( {\dfrac{\pi }{4} - x} \right)\]
Applying the formula and differentiating the term we will get ,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
Differentiation of \[\tan x = {\sec ^2}x\]
\[ \Rightarrow {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right).\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right)\]
Differentiation of \[\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right) = \left( { - 1} \right)\]
\[ \Rightarrow - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Hence the answer is (B) which is\[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\].
Note:
Students generally make mistakes while using the trigonometric formula as well while using the differentiation via chain rule hence students must be very careful while doing the differentiation .
While watching the trigonometric equation inside the square root it looks very complex hence our first step will be to simplify the terms using the basic trigonometric formula and then we will be differentiating the term using chain rule.
Formula Used:
\[\sin 2x = 2\sin x\cos x\],
\[{\cos ^2}x + {\sin ^2}x = 1\] ,
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\],
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Complete step-by-step answer:
By using the Double Angle Property we will solve the trigonometric equation inside square root.
Then \[\sin 2x\] can be written as \[2\sin x\cos x\] .
\[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \]
\[ \Rightarrow \sqrt {\dfrac{{1 - 2\sin x\cos x}}{{1 + 2\sin x\cos x}}} \]
By using the formula \[{\cos ^2}x + {\sin ^2}x = 1\] we will substitute the value of 1 inside the square root.
\[ \Rightarrow \sqrt {\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}} \]
By applying the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] we can simplify the terms.
\[ \Rightarrow \sqrt {\dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{{{\left( {\cos x + \sin x} \right)}^2}}}} \]
\[ \Rightarrow \sqrt {{{\left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)}^2}} \]
\[ \Rightarrow \left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)\]
Dividing Numerator and Denominator both by \[\cos x\] to make the terms more simpler,
\[ \Rightarrow \left( {\dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}} \right)\]
\[ \Rightarrow \left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)\]
According to the property we can write \[1\] as \[\tan \dfrac{\pi }{4}\]
\[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\]
According to the formula \[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\] can be written as \[\tan \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right)\]
We have got the inner trigonometric values in the simplest form and now we will be differentiating it,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
By Applying chain rule we will be differentiating the term.
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Where \[f\left( x \right) = \tan x\] and \[g\left( x \right) = \left( {\dfrac{\pi }{4} - x} \right)\]
Applying the formula and differentiating the term we will get ,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
Differentiation of \[\tan x = {\sec ^2}x\]
\[ \Rightarrow {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right).\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right)\]
Differentiation of \[\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right) = \left( { - 1} \right)\]
\[ \Rightarrow - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Hence the answer is (B) which is\[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\].
Note:
Students generally make mistakes while using the trigonometric formula as well while using the differentiation via chain rule hence students must be very careful while doing the differentiation .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

