
Find the value of \[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \] .
A. \[{\sec ^2}x\]
B. \[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
C. \[{\sec ^2}\left( {\dfrac{\pi }{4} + x} \right)\]
D. \[{\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Answer
219k+ views
Hint:
While watching the trigonometric equation inside the square root it looks very complex hence our first step will be to simplify the terms using the basic trigonometric formula and then we will be differentiating the term using chain rule.
Formula Used:
\[\sin 2x = 2\sin x\cos x\],
\[{\cos ^2}x + {\sin ^2}x = 1\] ,
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\],
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Complete step-by-step answer:
By using the Double Angle Property we will solve the trigonometric equation inside square root.
Then \[\sin 2x\] can be written as \[2\sin x\cos x\] .
\[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \]
\[ \Rightarrow \sqrt {\dfrac{{1 - 2\sin x\cos x}}{{1 + 2\sin x\cos x}}} \]
By using the formula \[{\cos ^2}x + {\sin ^2}x = 1\] we will substitute the value of 1 inside the square root.
\[ \Rightarrow \sqrt {\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}} \]
By applying the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] we can simplify the terms.
\[ \Rightarrow \sqrt {\dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{{{\left( {\cos x + \sin x} \right)}^2}}}} \]
\[ \Rightarrow \sqrt {{{\left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)}^2}} \]
\[ \Rightarrow \left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)\]
Dividing Numerator and Denominator both by \[\cos x\] to make the terms more simpler,
\[ \Rightarrow \left( {\dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}} \right)\]
\[ \Rightarrow \left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)\]
According to the property we can write \[1\] as \[\tan \dfrac{\pi }{4}\]
\[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\]
According to the formula \[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\] can be written as \[\tan \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right)\]
We have got the inner trigonometric values in the simplest form and now we will be differentiating it,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
By Applying chain rule we will be differentiating the term.
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Where \[f\left( x \right) = \tan x\] and \[g\left( x \right) = \left( {\dfrac{\pi }{4} - x} \right)\]
Applying the formula and differentiating the term we will get ,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
Differentiation of \[\tan x = {\sec ^2}x\]
\[ \Rightarrow {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right).\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right)\]
Differentiation of \[\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right) = \left( { - 1} \right)\]
\[ \Rightarrow - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Hence the answer is (B) which is\[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\].
Note:
Students generally make mistakes while using the trigonometric formula as well while using the differentiation via chain rule hence students must be very careful while doing the differentiation .
While watching the trigonometric equation inside the square root it looks very complex hence our first step will be to simplify the terms using the basic trigonometric formula and then we will be differentiating the term using chain rule.
Formula Used:
\[\sin 2x = 2\sin x\cos x\],
\[{\cos ^2}x + {\sin ^2}x = 1\] ,
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\],
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Complete step-by-step answer:
By using the Double Angle Property we will solve the trigonometric equation inside square root.
Then \[\sin 2x\] can be written as \[2\sin x\cos x\] .
\[\dfrac{d}{{dx}}\sqrt {\dfrac{{1 - \sin 2x}}{{1 + \sin 2x}}} \]
\[ \Rightarrow \sqrt {\dfrac{{1 - 2\sin x\cos x}}{{1 + 2\sin x\cos x}}} \]
By using the formula \[{\cos ^2}x + {\sin ^2}x = 1\] we will substitute the value of 1 inside the square root.
\[ \Rightarrow \sqrt {\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}} \]
By applying the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] we can simplify the terms.
\[ \Rightarrow \sqrt {\dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{{{\left( {\cos x + \sin x} \right)}^2}}}} \]
\[ \Rightarrow \sqrt {{{\left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)}^2}} \]
\[ \Rightarrow \left( {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}} \right)\]
Dividing Numerator and Denominator both by \[\cos x\] to make the terms more simpler,
\[ \Rightarrow \left( {\dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}}} \right) + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}} \right)\]
\[ \Rightarrow \left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)\]
According to the property we can write \[1\] as \[\tan \dfrac{\pi }{4}\]
\[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\]
According to the formula \[ \Rightarrow \left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}} \right)\] can be written as \[\tan \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right)\]
We have got the inner trigonometric values in the simplest form and now we will be differentiating it,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
By Applying chain rule we will be differentiating the term.
\[\dfrac{d}{{dx}}[f(g(x))] = f\prime (g(x))g\prime (x)\]
Where \[f\left( x \right) = \tan x\] and \[g\left( x \right) = \left( {\dfrac{\pi }{4} - x} \right)\]
Applying the formula and differentiating the term we will get ,
\[\dfrac{d}{{dx}}\left( {\tan \left( {\dfrac{\pi }{4} - x} \right)} \right)\]
Differentiation of \[\tan x = {\sec ^2}x\]
\[ \Rightarrow {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right).\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right)\]
Differentiation of \[\dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} - x} \right) = \left( { - 1} \right)\]
\[ \Rightarrow - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\]
Hence the answer is (B) which is\[ - {\sec ^2}\left( {\dfrac{\pi }{4} - x} \right)\].
Note:
Students generally make mistakes while using the trigonometric formula as well while using the differentiation via chain rule hence students must be very careful while doing the differentiation .
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

