
Find the value of $\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right] = $
A $\left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]$
B $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&0
\end{array}} \right]$
C $\left[ {\begin{array}{*{20}{c}}
0&1 \\
1&0
\end{array}} \right]$
D $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Answer
204.6k+ views
Hint:First we will simplify the matrices then add the matrices. Then we will use the trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ to solve the question and get the required solution.
Formula Used: ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Complete step by step Solution:
$\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
We know that $a\left[ {\begin{array}{*{20}{c}}
x&y \\
z&u
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ax}&{ay} \\
{az}&{au}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
After adding, the matrices we will get
$ = \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta + {{\cos }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
We know the identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$
$ = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Therefore, the correct option is (D).
Note:Students should do the calculations carefully to avoid any mistakes. And use the correct identities to solve the calculations correctly. And also keep in mind that ${\cos ^2}\theta + {\sin ^2}\theta = 1$.
Formula Used: ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Complete step by step Solution:
$\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
We know that $a\left[ {\begin{array}{*{20}{c}}
x&y \\
z&u
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ax}&{ay} \\
{az}&{au}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
After adding, the matrices we will get
$ = \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta + {{\cos }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
We know the identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$
$ = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Therefore, the correct option is (D).
Note:Students should do the calculations carefully to avoid any mistakes. And use the correct identities to solve the calculations correctly. And also keep in mind that ${\cos ^2}\theta + {\sin ^2}\theta = 1$.
Recently Updated Pages
JEE Main Candidate Login 2026 and Registration Portal | Form Access

Household Electricity Important Concepts and Tips for JEE

JEE Main 2023 (January 31st Shift 1) Physics Question Paper with Answer Key

Clemmensen and Wolff Kishner Reduction - Important Concepts and Tips for JEE

JEE Main Maths Paper Pattern 2026: Marking Scheme & Sections

JEE Main 2023 (April 12th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Atomic Structure: Definition, Models, and Examples

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

JEE Main 2026 Session 1 Form Correction – Procedure, Fees & Editing Guidelines

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Collision: Meaning, Types & Examples in Physics

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

