
Find the sum of the series $\dfrac{1}{2\cdot 3}+\dfrac{1}{4\cdot 5}+\dfrac{1}{6\cdot 7}+...\infty =$
A. ${{\log }_{e}}\left( \dfrac{2}{e} \right)$
B. ${{\log }_{e}}\left( \dfrac{e}{2} \right)$
C. $\dfrac{2}{e}$
D. $\dfrac{e}{2}$
Answer
216k+ views
Hint: In this question, we are to find the sum of the given series. For this, we need to apply the logarithmic series formula. By rewriting the series into the form of a logarithmic series, we can evaluate the sum of the given series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{2\cdot 3}+\dfrac{1}{4\cdot 5}+\dfrac{1}{6\cdot 7}+...\infty $
Rewriting the given series as
$\begin{align}
& \dfrac{1}{2\cdot 3}+\dfrac{1}{4\cdot 5}+\dfrac{1}{6\cdot 7}+...\infty =\left( \dfrac{1}{2}-\dfrac{1}{3} \right)+\left( \dfrac{1}{4}-\dfrac{1}{5} \right)+\left( \dfrac{1}{6}-\dfrac{1}{7} \right)+...\infty \\
& \Rightarrow \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty \\
\end{align}$
But we a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \\
& \Rightarrow x-{{\log }_{e}}(1+x)=\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \\
\end{align}$
On comparing (1) and (2), we get
$x=1$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty =1-{{\log }_{e}}(1+x) \\
& \Rightarrow 1-{{\log }_{e}}(1+1) \\
& \Rightarrow 1-{{\log }_{e}}2 \\
\end{align}$
Since we know that the base of the log and the argument of the log are the same, then its value is equal to $1$, on applying this property, we get
${{\log }_{e}}e=1$
Then,
$1-{{\log }_{e}}2={{\log }_{e}}e-\log 2$
We have the property of logarithms,
$\log x-\log y=\log \left( \dfrac{x}{y} \right)$
We can write
$\Rightarrow \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty ={{\log }_{e}}e-\log 2={{\log }_{e}}\left( \dfrac{e}{2} \right)$
Thus, the sum is
$\dfrac{1}{5}+\dfrac{1}{2}\cdot \dfrac{1}{{{5}^{2}}}+\dfrac{1}{3}\cdot \dfrac{1}{{{5}^{3}}}+...\infty ={{\log }_{e}}\left( \dfrac{e}{2} \right)$
Option ‘B’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum’s would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=1$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{2\cdot 3}+\dfrac{1}{4\cdot 5}+\dfrac{1}{6\cdot 7}+...\infty $
Rewriting the given series as
$\begin{align}
& \dfrac{1}{2\cdot 3}+\dfrac{1}{4\cdot 5}+\dfrac{1}{6\cdot 7}+...\infty =\left( \dfrac{1}{2}-\dfrac{1}{3} \right)+\left( \dfrac{1}{4}-\dfrac{1}{5} \right)+\left( \dfrac{1}{6}-\dfrac{1}{7} \right)+...\infty \\
& \Rightarrow \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty \\
\end{align}$
But we a logarithmic series as
$\begin{align}
& {{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \\
& \Rightarrow x-{{\log }_{e}}(1+x)=\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \\
\end{align}$
On comparing (1) and (2), we get
$x=1$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty =1-{{\log }_{e}}(1+x) \\
& \Rightarrow 1-{{\log }_{e}}(1+1) \\
& \Rightarrow 1-{{\log }_{e}}2 \\
\end{align}$
Since we know that the base of the log and the argument of the log are the same, then its value is equal to $1$, on applying this property, we get
${{\log }_{e}}e=1$
Then,
$1-{{\log }_{e}}2={{\log }_{e}}e-\log 2$
We have the property of logarithms,
$\log x-\log y=\log \left( \dfrac{x}{y} \right)$
We can write
$\Rightarrow \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+....\infty ={{\log }_{e}}e-\log 2={{\log }_{e}}\left( \dfrac{e}{2} \right)$
Thus, the sum is
$\dfrac{1}{5}+\dfrac{1}{2}\cdot \dfrac{1}{{{5}^{2}}}+\dfrac{1}{3}\cdot \dfrac{1}{{{5}^{3}}}+...\infty ={{\log }_{e}}\left( \dfrac{e}{2} \right)$
Option ‘B’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum’s would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=1$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

