
Find the sum of an infinite series \[1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \].
A. 3
B. 6
C. 9
D. 12
Answer
233.1k+ views
Hint: In the given question, the infinite series is given. We will divide the series by \[2\], then subtract the new series from the original series. The terms of the new series are in geometric progression. So, by using the formula of the sum of infinite terms in geometric progression, we will find the value of the series.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

