Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the sum of an infinite series \[1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \].
A. 3
B. 6
C. 9
D. 12

Answer
VerifiedVerified
161.1k+ views
Hint: In the given question, the infinite series is given. We will divide the series by \[2\], then subtract the new series from the original series. The terms of the new series are in geometric progression. So, by using the formula of the sum of infinite terms in geometric progression, we will find the value of the series.

Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].

Complete step by step solution:
The given series is,
    \[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
    \[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.

Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.