
Find the sum of an infinite series \[1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \].
A. 3
B. 6
C. 9
D. 12
Answer
216k+ views
Hint: In the given question, the infinite series is given. We will divide the series by \[2\], then subtract the new series from the original series. The terms of the new series are in geometric progression. So, by using the formula of the sum of infinite terms in geometric progression, we will find the value of the series.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Formula used:
The sum of infinite terms in GP is: \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] , where \[a\] is the first term and \[r\] is the common ratio, where \[r \ne 1\].
Complete step by step solution:
The given series is,
\[S = 1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty \] ….equation(1)
Divide the above series by \[2\].
\[\dfrac{S}{2} = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty \] .......equation (2)
Subtract equation (2) from equation (1).
\[S - \dfrac{S}{2} = \left( {1 + \dfrac{3}{2} + \dfrac{5}{{{2^2}}} + \dfrac{7}{{{2^3}}} + .....\infty } \right) - \left( {\dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + \dfrac{7}{{{2^4}}} + .....\infty } \right)\]
Simplify the above equation.
Subtract the terms of the second bracket from the terms of the first brackets with the same denominator.
\[\dfrac{S}{2} = 1 + \dfrac{{3 - 1}}{2} + \dfrac{{5 - 3}}{{{2^2}}} + \dfrac{{7 - 5}}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \dfrac{2}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + .....\infty \]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + .....\infty } \right]\]
The terms in the square bracket are in geometric progression where the first term is \[a = 1\] and the common ratio is \[r = \dfrac{1}{2}\].
Apply the formula of the sum of infinite terms in geometric progression \[{S_\infty } = \dfrac{a}{{\left( {1 - r} \right)}}\] in the square bracket.
\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\left( {1 - \dfrac{1}{2}} \right)}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{1}{{\dfrac{1}{2}}}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + \left[ {\dfrac{2}{1}} \right]\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 1 + 2\]
\[ \Rightarrow \]\[\dfrac{S}{2} = 3\]
\[ \Rightarrow \]\[S = 2 \times 3\]
\[ \Rightarrow \]\[S = 6\]
Hence, the correct option is option B.
Note: Students are often confused with the value of \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}}\] that whether \[\dfrac{{ac}}{b}\] or \[\dfrac{a}{{bc}}\] . But the correct formula is \[\dfrac{a}{{\left( {\dfrac{b}{c}} \right)}} = \dfrac{{ac}}{b}\]. Because the denominator of the denominator will be multiplied to the numerator.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

