
Find the point which is diametrically opposite to the point \[P\left( {1,0} \right)\] on the circle \[{x^2} + {y^2} + 2x + 4y - 3 = 0\].
A. \[\left( {3,4} \right)\]
B. \[\left( {3, - 4} \right)\]
C. \[\left( { - 3,4} \right)\]
D. \[\left( { - 3, - 4} \right)\]
Answer
162k+ views
Hint: Simplify the given equation of circle into the standard form. Then using the general equation of the given circle find the center of the circle. In the end, apply the midpoint formula to get the diametrically opposite point of \[P\left( {1,0} \right)\].
Formula Used: The standard form of a circle is: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where \[\left( {h,k} \right)\] is the center and \[r\] is the radius of the circle.
The midpoint of the line joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is: \[\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
Complete step by step solution:
The given equation of a circle is \[{x^2} + {y^2} + 2x + 4y - 3 = 0\] and the point on the circle is \[P\left( {1,0} \right)\].
Let’s simplify the given equation of the circle into the standard form.
\[{x^2} + {y^2} + 2x + 4y - 3 = 0\]
\[ \Rightarrow \]\[{x^2} + 2x + {y^2} + 4y - 3 = 0\]
\[ \Rightarrow \]\[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} - 8 = 0\]
\[ \Rightarrow \]\[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {2\sqrt 2 } \right)^2}\]
Thus, the center of the given circle is \[\left( { - 1, - 2} \right)\].

Image: The circle \[{x^2} + {y^2} + 2x + 4y - 3 = 0\] with diameter passing through the center \[\left( { - 1, - 2} \right)\] and passing through the point \[P\left( {1,0} \right)\]
Let \[Q\left( {x,y} \right)\] be the diametrically opposite point of the point \[P\left( {1,0} \right)\].
Since the center is the mid-point of the endpoints of a diameter.
So, apply midpoint formula to calculate the coordinates of the point \[Q\left( {x,y} \right)\].
\[\left( { - 1, - 2} \right) = \left( {\dfrac{{x + 1}}{2},\dfrac{{y + 0}}{2}} \right)\]
\[ \Rightarrow \]\[\left( { - 1, - 2} \right) = \left( {\dfrac{{x + 1}}{2},\dfrac{y}{2}} \right)\]
Now equate the coordinates. We get
\[ - 1 = \dfrac{{x + 1}}{2}\] and \[ - 2 = \dfrac{y}{2}\]
Solve the above equations.
Let’s solve the equation \[ - 1 = \dfrac{{x + 1}}{2}\].
\[x + 1 = - 1\left( 2 \right)\]
\[ \Rightarrow \]\[x + 1 = - 2\]
\[ \Rightarrow \]\[x = - 2 - 1\]
\[ \Rightarrow \]\[x = - 3\]
Now solve the equation \[ - 2 = \dfrac{y}{2}\].
\[y = - 2\left( 2 \right)\]
\[ \Rightarrow \]\[y = - 4\]
Thus, the diametrically opposite point of the point \[P\left( {1,0} \right)\] is \[Q\left( { - 3, - 4} \right)\].
Hence the correct option is D.
Note: The standard form of a circle is \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where \[\left( {h,k} \right)\] is the center and \[r\] is the radius of the circle.
The general equation of a circle is \[{x^2} + {y^2} + 2gx + 2fy + c = 0\], where \[\left( { - g, - f} \right)\] is the center and \[r = \sqrt {{f^2} + {g^2} - c} \] is the radius of the circle.
Formula Used: The standard form of a circle is: \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where \[\left( {h,k} \right)\] is the center and \[r\] is the radius of the circle.
The midpoint of the line joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is: \[\left( {x,y} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
Complete step by step solution:
The given equation of a circle is \[{x^2} + {y^2} + 2x + 4y - 3 = 0\] and the point on the circle is \[P\left( {1,0} \right)\].
Let’s simplify the given equation of the circle into the standard form.
\[{x^2} + {y^2} + 2x + 4y - 3 = 0\]
\[ \Rightarrow \]\[{x^2} + 2x + {y^2} + 4y - 3 = 0\]
\[ \Rightarrow \]\[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} - 8 = 0\]
\[ \Rightarrow \]\[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {2\sqrt 2 } \right)^2}\]
Thus, the center of the given circle is \[\left( { - 1, - 2} \right)\].

Image: The circle \[{x^2} + {y^2} + 2x + 4y - 3 = 0\] with diameter passing through the center \[\left( { - 1, - 2} \right)\] and passing through the point \[P\left( {1,0} \right)\]
Let \[Q\left( {x,y} \right)\] be the diametrically opposite point of the point \[P\left( {1,0} \right)\].
Since the center is the mid-point of the endpoints of a diameter.
So, apply midpoint formula to calculate the coordinates of the point \[Q\left( {x,y} \right)\].
\[\left( { - 1, - 2} \right) = \left( {\dfrac{{x + 1}}{2},\dfrac{{y + 0}}{2}} \right)\]
\[ \Rightarrow \]\[\left( { - 1, - 2} \right) = \left( {\dfrac{{x + 1}}{2},\dfrac{y}{2}} \right)\]
Now equate the coordinates. We get
\[ - 1 = \dfrac{{x + 1}}{2}\] and \[ - 2 = \dfrac{y}{2}\]
Solve the above equations.
Let’s solve the equation \[ - 1 = \dfrac{{x + 1}}{2}\].
\[x + 1 = - 1\left( 2 \right)\]
\[ \Rightarrow \]\[x + 1 = - 2\]
\[ \Rightarrow \]\[x = - 2 - 1\]
\[ \Rightarrow \]\[x = - 3\]
Now solve the equation \[ - 2 = \dfrac{y}{2}\].
\[y = - 2\left( 2 \right)\]
\[ \Rightarrow \]\[y = - 4\]
Thus, the diametrically opposite point of the point \[P\left( {1,0} \right)\] is \[Q\left( { - 3, - 4} \right)\].
Hence the correct option is D.
Note: The standard form of a circle is \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\], where \[\left( {h,k} \right)\] is the center and \[r\] is the radius of the circle.
The general equation of a circle is \[{x^2} + {y^2} + 2gx + 2fy + c = 0\], where \[\left( { - g, - f} \right)\] is the center and \[r = \sqrt {{f^2} + {g^2} - c} \] is the radius of the circle.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
