
Find the normal to the curve \[y = {\left( {1 + 2x} \right)^x} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)\] at \[x = 0\] .
A. \[y = 0\]
B. \[x + y = 1\]
C. \[x = 0\]
D. None of these
Answer
160.8k+ views
Hint: First, we differentiating the given equation with different type of property to get simplify form. After that we substitute the given value \[x = 0\] and we get the value of differentiation also substitute this value \[x = 0\] in given equation to get the value of \[y\] . Then using the general form of normal of a curve we got the required solution.
Formula Used:
Differentiation property \[\dfrac{d}{{dx}}\left( {u(x) + v(x)} \right) = \dfrac{d}{{dx}}\left( {u(x)} \right) + \dfrac{d}{{dx}}\left( {v(x)} \right)\] , where \[u\left( x \right),v\left( x \right)\] are functions of \[x\] .
Differentiation formula of \[{a^x}\] , \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x}\log a\] and
Differentiation formula of inverse, \[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Differentiation formula of sine, \[\dfrac{d}{{dx}}\left( {{{\sin }^n}x} \right) = n{\sin ^{n - 1}}x \times \cos x\]
Complete step by step solution:
Given \[y = {\left( {1 + 2x} \right)^x} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)\] ………..(1)
Differentiating the given equation with respect to \[x\] and simplifying, we get
\[\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + 2x} \right)}^x} + {{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\]……….(2)
Using differentiation property, \[\dfrac{d}{{dx}}\left( {u(x) + v(x)} \right) = \dfrac{d}{{dx}}\left( {u(x)} \right) + \dfrac{d}{{dx}}\left( {v(x)} \right)\] in above equation (2) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + 2x} \right)}^x}} \right) + \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\] ………………(3)
Now we use the differentiating formula \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x}\log a\] in above equation (3) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\] ……………(4)
Using the differentiating formula \[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in above equation (4) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{1}{{\sqrt {1 - {{\sin }^3}\left( x \right)} }}\dfrac{d}{{dx}}\left( {{{\sin }^3}\left( x \right)} \right)\] …………..(5)
Using the formula \[\dfrac{d}{{dx}}\left( {{{\sin }^n}x} \right) = n{\sin ^{n - 1}}x \times \cos x\] in above equation (5) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{1}{{\sqrt {1 - {{\sin }^3}\left( x \right)} }}\left( {3{{\sin }^2}x \times \cos x} \right)\] …………..(6)
Now given the value of \[x = 0\]
Substitute the value of \[x\] in the above equation (6) and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = {\left( {1 + 2 \times 0} \right)^0}\log \left( {1 + 2 \times 0} \right) + \dfrac{{3{{\sin }^2}0 \times \cos 0}}{{\sqrt {1 - {{\sin }^3}\left( 0 \right)} }}\]
We know the value of \[\sin 0 = 0\] and \[\cos 0 = 1\] .
Substitute \[\sin 0 = 0\] , \[\cos 0 = 1\] and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = {\left( 1 \right)^0}\log \left( 1 \right) + \dfrac{{3 \times {0^2} \times 1}}{{\sqrt {1 - {0^3}} }}\]
Substitute the value \[\log 1 = 0\] and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = 0 + 0\]
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = 0\]
Now substitute the value \[x = 0\] in equation (1) and we get
\[ \Rightarrow y = {\left( {1 + 2 \times 0} \right)^0} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( 0 \right)} \right)\]
\[ \Rightarrow y = {\left( 1 \right)^0} + {\sin ^{ - 1}}\left( 0 \right)\]
\[ \Rightarrow y = 1 + 0\]
\[ \Rightarrow y = 1\]
The general form of the equation of normal of a line
\[\dfrac{{y - {y_0}}}{{x - {x_0}}} = - \dfrac{{dy}}{{dx}}\] , where \[\left( {{x_0},{y_0}} \right) = \left( {0,1} \right)\]
\[ \Rightarrow \dfrac{{x - 0}}{{y - 1}} = - 0\]
Cross multiplying and we get
\[ \Rightarrow x = 0\]
Therefore, the normal of the curve \[y = {\left( {1 + 2x} \right)^x} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)\] is \[x = 0\] .
Hence the correct option is C.
Note: Students got confused while they using the form of normal equation \[y - {y_0} = - \dfrac{1}{{\dfrac{{dy}}{{dx}}}}\left( {x - {x_0}} \right)\] because \[\dfrac{1}{{\dfrac{{dy}}{{dx}}}}\] gives us error value. We need to reframe this formula and use it to get the equation of normal.
Formula Used:
Differentiation property \[\dfrac{d}{{dx}}\left( {u(x) + v(x)} \right) = \dfrac{d}{{dx}}\left( {u(x)} \right) + \dfrac{d}{{dx}}\left( {v(x)} \right)\] , where \[u\left( x \right),v\left( x \right)\] are functions of \[x\] .
Differentiation formula of \[{a^x}\] , \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x}\log a\] and
Differentiation formula of inverse, \[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Differentiation formula of sine, \[\dfrac{d}{{dx}}\left( {{{\sin }^n}x} \right) = n{\sin ^{n - 1}}x \times \cos x\]
Complete step by step solution:
Given \[y = {\left( {1 + 2x} \right)^x} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)\] ………..(1)
Differentiating the given equation with respect to \[x\] and simplifying, we get
\[\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + 2x} \right)}^x} + {{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\]……….(2)
Using differentiation property, \[\dfrac{d}{{dx}}\left( {u(x) + v(x)} \right) = \dfrac{d}{{dx}}\left( {u(x)} \right) + \dfrac{d}{{dx}}\left( {v(x)} \right)\] in above equation (2) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + 2x} \right)}^x}} \right) + \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\] ………………(3)
Now we use the differentiating formula \[\dfrac{d}{{dx}}\left( {{a^x}} \right) = {a^x}\log a\] in above equation (3) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)} \right)\] ……………(4)
Using the differentiating formula \[\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in above equation (4) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{1}{{\sqrt {1 - {{\sin }^3}\left( x \right)} }}\dfrac{d}{{dx}}\left( {{{\sin }^3}\left( x \right)} \right)\] …………..(5)
Using the formula \[\dfrac{d}{{dx}}\left( {{{\sin }^n}x} \right) = n{\sin ^{n - 1}}x \times \cos x\] in above equation (5) and we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = {\left( {1 + 2x} \right)^x}\log \left( {1 + 2x} \right) + \dfrac{1}{{\sqrt {1 - {{\sin }^3}\left( x \right)} }}\left( {3{{\sin }^2}x \times \cos x} \right)\] …………..(6)
Now given the value of \[x = 0\]
Substitute the value of \[x\] in the above equation (6) and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = {\left( {1 + 2 \times 0} \right)^0}\log \left( {1 + 2 \times 0} \right) + \dfrac{{3{{\sin }^2}0 \times \cos 0}}{{\sqrt {1 - {{\sin }^3}\left( 0 \right)} }}\]
We know the value of \[\sin 0 = 0\] and \[\cos 0 = 1\] .
Substitute \[\sin 0 = 0\] , \[\cos 0 = 1\] and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = {\left( 1 \right)^0}\log \left( 1 \right) + \dfrac{{3 \times {0^2} \times 1}}{{\sqrt {1 - {0^3}} }}\]
Substitute the value \[\log 1 = 0\] and we get
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = 0 + 0\]
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{x = 0}} = 0\]
Now substitute the value \[x = 0\] in equation (1) and we get
\[ \Rightarrow y = {\left( {1 + 2 \times 0} \right)^0} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( 0 \right)} \right)\]
\[ \Rightarrow y = {\left( 1 \right)^0} + {\sin ^{ - 1}}\left( 0 \right)\]
\[ \Rightarrow y = 1 + 0\]
\[ \Rightarrow y = 1\]
The general form of the equation of normal of a line
\[\dfrac{{y - {y_0}}}{{x - {x_0}}} = - \dfrac{{dy}}{{dx}}\] , where \[\left( {{x_0},{y_0}} \right) = \left( {0,1} \right)\]
\[ \Rightarrow \dfrac{{x - 0}}{{y - 1}} = - 0\]
Cross multiplying and we get
\[ \Rightarrow x = 0\]
Therefore, the normal of the curve \[y = {\left( {1 + 2x} \right)^x} + {\sin ^{ - 1}}\left( {{{\sin }^3}\left( x \right)} \right)\] is \[x = 0\] .
Hence the correct option is C.
Note: Students got confused while they using the form of normal equation \[y - {y_0} = - \dfrac{1}{{\dfrac{{dy}}{{dx}}}}\left( {x - {x_0}} \right)\] because \[\dfrac{1}{{\dfrac{{dy}}{{dx}}}}\] gives us error value. We need to reframe this formula and use it to get the equation of normal.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
