
Find the maximum value of $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$.
A. 5
B. 11
C. 10
D. -11
Answer
162.9k+ views
Hint: First we will apply the formula sum of cosine formula to simplify the given expression. Then apply the formula to find the maximum and minimum of the given expression.
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
