
Find the maximum value of $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$.
A. 5
B. 11
C. 10
D. -11
Answer
216.3k+ views
Hint: First we will apply the formula sum of cosine formula to simplify the given expression. Then apply the formula to find the maximum and minimum of the given expression.
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

