
Find the maximum angular speed of the electron of a hydrogen atom in a stationary orbit.
Answer
216.3k+ views
Hint:According to the Bohr’s model of atomic structure, the angular momentum of the electron in an orbit is quantized. We need to use the classical definition of the angular momentum and compare it with the quantized angular momentum of the electron in the hydrogen atom.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[L = \dfrac{{nh}}{{2\pi }}\]
where the angular momentum L is the integral multiple of the minimum angular momentum of the electron in the hydrogen atom.
Complete step by step solution:
Let the mass of the electron is m and move with linear speed v in a circular orbit of nth energy level of radius r. Then the angular momentum of the electron will be,
\[L = mvr\]
On comparing with the angular momentum as per the Bohr’s model,
\[mvr = \dfrac{{nh}}{{2\pi }}\]
If the angular speed is \[\omega \] then the angular speed is related to the linear speed as \[\omega r = v\]
So, the expression becomes,
\[m\left( {\omega r} \right)r = \dfrac{{nh}}{{2\pi }} \\ \]
\[\Rightarrow \omega = \dfrac{{nh}}{{2m\pi {r^2}}}\]
For the maximum value of the angular speed the electron should be in ground state \[n = 1\] because the angular speed is inversely proportional to the principal quantum number. The radius of the ground state orbit is \[0.53 \times {10^{ - 10}}m\]
Putting the values, we get the minimum angular speed of the electron in hydrogen atom is,
\[{\omega _{\min }} = \dfrac{{1 \times 6.626 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 34}} \times 3.14 \times {{\left( {0.53 \times {{10}^{ - 10}}} \right)}^2}}}rad/s \\ \]
\[\therefore {\omega _{\min }} = 4.13 \times {10^{16}}\,rad/s\]
Hence, the minimum angular speed of the electron in a hydrogen atom is \[4.13 \times {10^{16}}\,rad/s\].
Therefore, the correct answer is \[4.13 \times {10^{17}}\,rad/s\].
Note: The angular momentum is proportional to the principal quantum number and the angular momentum of the particle is proportional to the angular speed. So for the minimum angular speed the angular momentum will also be minimum.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[L = \dfrac{{nh}}{{2\pi }}\]
where the angular momentum L is the integral multiple of the minimum angular momentum of the electron in the hydrogen atom.
Complete step by step solution:
Let the mass of the electron is m and move with linear speed v in a circular orbit of nth energy level of radius r. Then the angular momentum of the electron will be,
\[L = mvr\]
On comparing with the angular momentum as per the Bohr’s model,
\[mvr = \dfrac{{nh}}{{2\pi }}\]
If the angular speed is \[\omega \] then the angular speed is related to the linear speed as \[\omega r = v\]
So, the expression becomes,
\[m\left( {\omega r} \right)r = \dfrac{{nh}}{{2\pi }} \\ \]
\[\Rightarrow \omega = \dfrac{{nh}}{{2m\pi {r^2}}}\]
For the maximum value of the angular speed the electron should be in ground state \[n = 1\] because the angular speed is inversely proportional to the principal quantum number. The radius of the ground state orbit is \[0.53 \times {10^{ - 10}}m\]
Putting the values, we get the minimum angular speed of the electron in hydrogen atom is,
\[{\omega _{\min }} = \dfrac{{1 \times 6.626 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 34}} \times 3.14 \times {{\left( {0.53 \times {{10}^{ - 10}}} \right)}^2}}}rad/s \\ \]
\[\therefore {\omega _{\min }} = 4.13 \times {10^{16}}\,rad/s\]
Hence, the minimum angular speed of the electron in a hydrogen atom is \[4.13 \times {10^{16}}\,rad/s\].
Therefore, the correct answer is \[4.13 \times {10^{17}}\,rad/s\].
Note: The angular momentum is proportional to the principal quantum number and the angular momentum of the particle is proportional to the angular speed. So for the minimum angular speed the angular momentum will also be minimum.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

