
Find the limit of given series: $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=$
a)$\dfrac{1}{100}$
b)$3$
c)$\dfrac{1}{3}$
d)$1$
Answer
214.2k+ views
The sum of first n natural numbers to power one can be written as,
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

