
Find the limit of given series: $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=$
a)$\dfrac{1}{100}$
b)$3$
c)$\dfrac{1}{3}$
d)$1$
Answer
232.8k+ views
The sum of first n natural numbers to power one can be written as,
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

