Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the limit of given series: limn199+299++n99n100=

a)1100
b)3
c)13
d)1

Answer
VerifiedVerified
140.1k+ views
like imagedislike image
The sum of first n natural numbers to power one can be written as,
     11+21++n1=n(n+1)2=n22+n2
Similarly, the sum of first n natural numbers to power two can be written as,
     12+22++n2=n(n+1)(2n+1)6
     12+22++n2=(n2+n)(2n+1)6
     12+22++n2=2n3+n2+2n2+n6
     12+22++n2=n33+n22+n6
The sum of first n natural numbers to power three can be written as,
     13+23++n3=(n(n+1)2)2
     13+23++n3=n2(n2+2n+1)4
     13+23++n3=n4+2n3+n24
     13+23++n3=n44+n32+n24
Generalizing this, we get
     1x+2x++nx=nx+1x+1+k1nx+k2nx1+
Now substituting (x=100), we get
     199+299++n99=n99+199+1+k1n99+k2n991+
Now the given expression becomes,
     limn199+299++n99n100=limnn99+199+1+k1n99+k2n991+n100
     limn199+299++n99n100=limnn100100+k1n99+k2n98+n100
     limn199+299++n99n100=limnn100100n100+k1n99n100+k2n98n100+
     limn199+299++n99n100=limn1100+k1n+k2n2+
Applying the limits, we get
     limn199+299++n99n100=1100+k1+k2+
We know, 10, so
     limn199+299++n99n100=1100+0+0+
     limn199+299++n99n100=1100
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for MAHARASHTRABOARD students
PhysicsPhysics
BiologyBiology
ChemistryChemistry
MathsMaths
₹34,650 (9% Off)
₹31,500 per year
Select and buy