
Find the limit of given series: $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=$
a)$\dfrac{1}{100}$
b)$3$
c)$\dfrac{1}{3}$
d)$1$
Answer
153.6k+ views
The sum of first n natural numbers to power one can be written as,
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
