
Find the integral \[\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}=\]
A. \[0\]
B. \[\pi \]
C. \[\dfrac{\pi }{2}\]
D. \[\dfrac{\pi }{4}\]
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $\left[ 0,\dfrac{\pi }{2} \right]$. And here the given function in the interval consists trigonometric function. So, by substituting $x=a-x$in the function, we can evaluate the given integral. Here the upper limit $a=\dfrac{\pi }{2}$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}\]
Since the limits are $\left[ 0,\dfrac{\pi }{2} \right]$, we can use the formula,
\[\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}\]
So, the given integral become
\[\begin{align}
& I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)dx}{{{\cos }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)+{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
\end{align}\]
So, we can write
\[\begin{align}
& I+I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}+\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{[1]dx} \\
& \therefore I=\dfrac{1}{2}\left[ x \right]_{0}^{{}^{\pi }/{}_{2}}=\dfrac{\pi }{4} \\
\end{align}\]
Option ‘D’ is correct
Note: In this question, the interval for the given integral is in the form of $[0,a]$. So, we can apply $x=a-x$ in the function of the given integral. By evaluating this, we get the required integral. Here we can also use a direct formula since the function in the given integral has trigonometric functions. The direct formula used for solving this type of integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$. Here we need to remember that $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $ and $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $. By using this, we can easily evaluate the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}\]
Since the limits are $\left[ 0,\dfrac{\pi }{2} \right]$, we can use the formula,
\[\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}\]
So, the given integral become
\[\begin{align}
& I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)dx}{{{\cos }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)+{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
\end{align}\]
So, we can write
\[\begin{align}
& I+I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}+\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{[1]dx} \\
& \therefore I=\dfrac{1}{2}\left[ x \right]_{0}^{{}^{\pi }/{}_{2}}=\dfrac{\pi }{4} \\
\end{align}\]
Option ‘D’ is correct
Note: In this question, the interval for the given integral is in the form of $[0,a]$. So, we can apply $x=a-x$ in the function of the given integral. By evaluating this, we get the required integral. Here we can also use a direct formula since the function in the given integral has trigonometric functions. The direct formula used for solving this type of integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$. Here we need to remember that $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $ and $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $. By using this, we can easily evaluate the given integral.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

