
Find the integral \[\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}=\]
A. \[0\]
B. \[\pi \]
C. \[\dfrac{\pi }{2}\]
D. \[\dfrac{\pi }{4}\]
Answer
216.3k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $\left[ 0,\dfrac{\pi }{2} \right]$. And here the given function in the interval consists trigonometric function. So, by substituting $x=a-x$in the function, we can evaluate the given integral. Here the upper limit $a=\dfrac{\pi }{2}$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}\]
Since the limits are $\left[ 0,\dfrac{\pi }{2} \right]$, we can use the formula,
\[\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}\]
So, the given integral become
\[\begin{align}
& I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)dx}{{{\cos }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)+{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
\end{align}\]
So, we can write
\[\begin{align}
& I+I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}+\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{[1]dx} \\
& \therefore I=\dfrac{1}{2}\left[ x \right]_{0}^{{}^{\pi }/{}_{2}}=\dfrac{\pi }{4} \\
\end{align}\]
Option ‘D’ is correct
Note: In this question, the interval for the given integral is in the form of $[0,a]$. So, we can apply $x=a-x$ in the function of the given integral. By evaluating this, we get the required integral. Here we can also use a direct formula since the function in the given integral has trigonometric functions. The direct formula used for solving this type of integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$. Here we need to remember that $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $ and $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $. By using this, we can easily evaluate the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}\]
Since the limits are $\left[ 0,\dfrac{\pi }{2} \right]$, we can use the formula,
\[\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}\]
So, the given integral become
\[\begin{align}
& I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)dx}{{{\cos }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)+{{\sin }^{{}^{3}/{}_{2}}}(\dfrac{\pi }{2}-x)}} \\
& \text{ }=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
\end{align}\]
So, we can write
\[\begin{align}
& I+I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}xdx}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}+\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\cos }^{{}^{3}/{}_{2}}}xdx}{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}} \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{\dfrac{{{\sin }^{{}^{3}/{}_{2}}}x+{{\cos }^{{}^{3}/{}_{2}}}x}{{{\cos }^{{}^{3}/{}_{2}}}x+{{\sin }^{{}^{3}/{}_{2}}}x}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{{}^{\pi }/{}_{2}}{[1]dx} \\
& \therefore I=\dfrac{1}{2}\left[ x \right]_{0}^{{}^{\pi }/{}_{2}}=\dfrac{\pi }{4} \\
\end{align}\]
Option ‘D’ is correct
Note: In this question, the interval for the given integral is in the form of $[0,a]$. So, we can apply $x=a-x$ in the function of the given integral. By evaluating this, we get the required integral. Here we can also use a direct formula since the function in the given integral has trigonometric functions. The direct formula used for solving this type of integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$. Here we need to remember that $\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta $ and $\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $. By using this, we can easily evaluate the given integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

