
Find the equation of circle of radius 5 and touching the coordinate axes in third quadrant.
A. \[{\left( {x + 5} \right)^2} + {\left( {y + 5} \right)^2} = 25\]
B. \[{\left( {x - 5} \right)^2} + {\left( {y - 5} \right)^2} = 25\]
C. \[{\left( {x - 5} \right)^2} + {\left( {y + 5} \right)^2} = 25\]
D. \[{\left( {x + 5} \right)^2} + {\left( {y - 5} \right)^2} = 25\]
Answer
161.1k+ views
Hint: Draw a circle with the given conditions. Then write the general equation of a circle. Then substitute the required values of the centre and the radius obtained from the diagram and calculate to obtain the required result.
Formula used:
The general equation of a circle is,
\[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\]
Where, \[(h,k)\] is the centre and r is the radius.
Complete step by step solution:
The diagram of the given problem is,

Image: Circle
From the diagram it is clear that the distance of the centre from the x-axis is 5 unit downward and the distance from the y-axis is 5 unit in the left direction.
Hence, the coordinate of the centre is \[( - 5, - 5)\] .
Therefore, the required equation is,
\[{\left( {x - ( - 5)} \right)^2} + {\left( {y - ( - 5)} \right)^2} = {5^2}\]
\[\therefore \]\[{\left( {x + 5} \right)^2} + {\left( {y + 5} \right)^2} = 25\]
The correct option is A.
Additional information:
In the first quadrant, ordinate and abscissa are positive integers. In the second quadrant, the abscissa of a coordinate is negative and the ordinate of a coordinate is positive. In the third quadrant, ordinate and abscissa of a coordinate both are negative. In the fourth quadrant, the abscissa of a coordinate is positive and the ordinate of a coordinate is negative.
Note: First draw the diagram for this type of question and then analyze it to compute the required results. From the diagram, it is very much clear that we shifted 5 units left and 5 units downward therefore the required centre is \[( - 5, - 5)\].
Formula used:
The general equation of a circle is,
\[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}\]
Where, \[(h,k)\] is the centre and r is the radius.
Complete step by step solution:
The diagram of the given problem is,

Image: Circle
From the diagram it is clear that the distance of the centre from the x-axis is 5 unit downward and the distance from the y-axis is 5 unit in the left direction.
Hence, the coordinate of the centre is \[( - 5, - 5)\] .
Therefore, the required equation is,
\[{\left( {x - ( - 5)} \right)^2} + {\left( {y - ( - 5)} \right)^2} = {5^2}\]
\[\therefore \]\[{\left( {x + 5} \right)^2} + {\left( {y + 5} \right)^2} = 25\]
The correct option is A.
Additional information:
In the first quadrant, ordinate and abscissa are positive integers. In the second quadrant, the abscissa of a coordinate is negative and the ordinate of a coordinate is positive. In the third quadrant, ordinate and abscissa of a coordinate both are negative. In the fourth quadrant, the abscissa of a coordinate is positive and the ordinate of a coordinate is negative.
Note: First draw the diagram for this type of question and then analyze it to compute the required results. From the diagram, it is very much clear that we shifted 5 units left and 5 units downward therefore the required centre is \[( - 5, - 5)\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
