
Find out which one of the following statements is true for the expression \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\] .
A. Dependent on B only.
B. Dependent on A and B.
C. Dependent on A only.
D. Independent of A and B.
Answer
216.3k+ views
Hint: First, factor out the common terms from the given equation. Then simplify the equation using the trigonometric identity subtraction formula for cosine. Further, simplify the equation and get the term as \[\cos\left( {A + B} \right)\]. After that, simplify the equation by using the trigonometric identity product of cosine. In the end, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and find the value of the given expression. Verify the variables present in the output and get the required answer.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

