
Find out which one of the following statements is true for the expression \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\] .
A. Dependent on B only.
B. Dependent on A and B.
C. Dependent on A only.
D. Independent of A and B.
Answer
163.2k+ views
Hint: First, factor out the common terms from the given equation. Then simplify the equation using the trigonometric identity subtraction formula for cosine. Further, simplify the equation and get the term as \[\cos\left( {A + B} \right)\]. After that, simplify the equation by using the trigonometric identity product of cosine. In the end, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and find the value of the given expression. Verify the variables present in the output and get the required answer.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
