
Find out which one of the following statements is true for the expression \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\] .
A. Dependent on B only.
B. Dependent on A and B.
C. Dependent on A only.
D. Independent of A and B.
Answer
162.3k+ views
Hint: First, factor out the common terms from the given equation. Then simplify the equation using the trigonometric identity subtraction formula for cosine. Further, simplify the equation and get the term as \[\cos\left( {A + B} \right)\]. After that, simplify the equation by using the trigonometric identity product of cosine. In the end, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and find the value of the given expression. Verify the variables present in the output and get the required answer.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
