
Find out which one of the following statements is true for the expression \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\] .
A. Dependent on B only.
B. Dependent on A and B.
C. Dependent on A only.
D. Independent of A and B.
Answer
233.1k+ views
Hint: First, factor out the common terms from the given equation. Then simplify the equation using the trigonometric identity subtraction formula for cosine. Further, simplify the equation and get the term as \[\cos\left( {A + B} \right)\]. After that, simplify the equation by using the trigonometric identity product of cosine. In the end, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and find the value of the given expression. Verify the variables present in the output and get the required answer.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
The given expression is \[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B\].
Let \[V\] be the value of the given expression.
Then,
\[V = \cos^{2}B + \cos^{2}\left( {A - B} \right) – 2\cos\left( {A - B} \right)\cos A \cos B\]
Factor out the common term from the right-hand side.
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos\left( {A - B} \right) – 2\cos A \cos B} \right]\]
Apply the formula of the difference of angles for cosine function \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
We get,
\[V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\cos A \cos B + \sin A \sin B – 2\cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B + \cos\left( {A - B} \right)\left[ {\sin A \sin B - \cos A \cos B} \right]\]
\[ \Rightarrow V = \cos^{2}B - \cos\left( {A - B} \right)\left[ {\cos A \cos B - \sin A \sin B} \right]\]
Apply the identity \[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\].
\[V = \cos^{2}B - \cos\left( {A - B} \right)\cos\left( {A + B} \right)\]
Now use the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2} A - \sin^{2} B\].
\[V = \cos^{2}B - \left( {\cos^{2} A - \sin^{2} B} \right)\]
\[ \Rightarrow V = \cos^{2}B - \cos^{2} A + \sin^{2} B\]
\[ \Rightarrow V = \sin^{2} B + \cos^{2}B - \cos^{2} A\]
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
\[V = 1 - \cos^{2} A\]
Again, apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[V = \sin^{2} A\]
Thus,
\[\cos^{2}\left( {A - B} \right) + \cos^{2}B – 2\cos\left( {A - B} \right)\cos A \cos B = \sin^{2} A\]
From the above equation, we observe that the value of the given expression is in terms of variable A.
Therefore, the given expression is dependent on A only.
Hence option C is correct.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angles for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

