
Find ‘\[n\left( {{A^c} \cap {B^c}} \right) = \]’, given that ‘\[n\left( U \right) = 700\]’ \[n\left( A \right) = 200\]’ \[n\left( B \right) = 300\]’ \[n\left( {A \cap B} \right) = 100\]’.
A. \[400\]
B. \[600\]
C. \[300\]
D. \[200\]
Answer
232.8k+ views
Hint:
Recall De Morgan’s law.
Formula Used:
De Morgan’s Law:
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Complementary formula:
\[n\left( {{A^c}} \right) = n\left( U \right) - n\left( A \right)\]
The formula of the number of element of \[A \cup B\]:
\[n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\]
Complete step-by-step answer:
We have to find the value of \[n\left( {{A^c} \cap {B^c}} \right)\]
Apply De Morgan’s Law.
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Calculating the number of elements of the above relation
\[n\left( {{A^c} \cap {B^c}} \right) = n{\left( {A \cup B} \right)^c}\]
Applying complementary formula on RHS
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( {A \cup B} \right)\]
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - \left[ {n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)} \right]\]
Simplify the above equation:
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( A \right) - n\left( B \right) + n\left( {A \cap B} \right)\]
Substitute \[n\left( U \right) = 700\], \[n\left( A \right) = 300\], \[n\left( B \right) = 200\] and \[n\left( {A \cap B} \right) = 100\] in the above equation, we get;
\[n\left( {{A^c} \cap {B^c}} \right) = 700 - 300 - 200 + 100\]
\[n\left( {{A^c} \cap {B^c}} \right) = 300\]
The correct answer is option C.
Note:
Students often make mistakes when they apply De Morgan’s formula. They used a wrong formula that is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cap B} \right)^c}\]. The correct formula is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cup B} \right)^c}\].
Recall De Morgan’s law.
Formula Used:
De Morgan’s Law:
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Complementary formula:
\[n\left( {{A^c}} \right) = n\left( U \right) - n\left( A \right)\]
The formula of the number of element of \[A \cup B\]:
\[n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\]
Complete step-by-step answer:
We have to find the value of \[n\left( {{A^c} \cap {B^c}} \right)\]
Apply De Morgan’s Law.
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Calculating the number of elements of the above relation
\[n\left( {{A^c} \cap {B^c}} \right) = n{\left( {A \cup B} \right)^c}\]
Applying complementary formula on RHS
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( {A \cup B} \right)\]
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - \left[ {n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)} \right]\]
Simplify the above equation:
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( A \right) - n\left( B \right) + n\left( {A \cap B} \right)\]
Substitute \[n\left( U \right) = 700\], \[n\left( A \right) = 300\], \[n\left( B \right) = 200\] and \[n\left( {A \cap B} \right) = 100\] in the above equation, we get;
\[n\left( {{A^c} \cap {B^c}} \right) = 700 - 300 - 200 + 100\]
\[n\left( {{A^c} \cap {B^c}} \right) = 300\]
The correct answer is option C.
Note:
Students often make mistakes when they apply De Morgan’s formula. They used a wrong formula that is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cap B} \right)^c}\]. The correct formula is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cup B} \right)^c}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

