
Find ‘\[n\left( {{A^c} \cap {B^c}} \right) = \]’, given that ‘\[n\left( U \right) = 700\]’ \[n\left( A \right) = 200\]’ \[n\left( B \right) = 300\]’ \[n\left( {A \cap B} \right) = 100\]’.
A. \[400\]
B. \[600\]
C. \[300\]
D. \[200\]
Answer
217.5k+ views
Hint:
Recall De Morgan’s law.
Formula Used:
De Morgan’s Law:
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Complementary formula:
\[n\left( {{A^c}} \right) = n\left( U \right) - n\left( A \right)\]
The formula of the number of element of \[A \cup B\]:
\[n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\]
Complete step-by-step answer:
We have to find the value of \[n\left( {{A^c} \cap {B^c}} \right)\]
Apply De Morgan’s Law.
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Calculating the number of elements of the above relation
\[n\left( {{A^c} \cap {B^c}} \right) = n{\left( {A \cup B} \right)^c}\]
Applying complementary formula on RHS
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( {A \cup B} \right)\]
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - \left[ {n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)} \right]\]
Simplify the above equation:
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( A \right) - n\left( B \right) + n\left( {A \cap B} \right)\]
Substitute \[n\left( U \right) = 700\], \[n\left( A \right) = 300\], \[n\left( B \right) = 200\] and \[n\left( {A \cap B} \right) = 100\] in the above equation, we get;
\[n\left( {{A^c} \cap {B^c}} \right) = 700 - 300 - 200 + 100\]
\[n\left( {{A^c} \cap {B^c}} \right) = 300\]
The correct answer is option C.
Note:
Students often make mistakes when they apply De Morgan’s formula. They used a wrong formula that is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cap B} \right)^c}\]. The correct formula is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cup B} \right)^c}\].
Recall De Morgan’s law.
Formula Used:
De Morgan’s Law:
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Complementary formula:
\[n\left( {{A^c}} \right) = n\left( U \right) - n\left( A \right)\]
The formula of the number of element of \[A \cup B\]:
\[n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\]
Complete step-by-step answer:
We have to find the value of \[n\left( {{A^c} \cap {B^c}} \right)\]
Apply De Morgan’s Law.
\[{A^c} \cap {B^c} = {\left( {A \cup B} \right)^c}\]
Calculating the number of elements of the above relation
\[n\left( {{A^c} \cap {B^c}} \right) = n{\left( {A \cup B} \right)^c}\]
Applying complementary formula on RHS
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( {A \cup B} \right)\]
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - \left[ {n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)} \right]\]
Simplify the above equation:
\[n\left( {{A^c} \cap {B^c}} \right) = n\left( U \right) - n\left( A \right) - n\left( B \right) + n\left( {A \cap B} \right)\]
Substitute \[n\left( U \right) = 700\], \[n\left( A \right) = 300\], \[n\left( B \right) = 200\] and \[n\left( {A \cap B} \right) = 100\] in the above equation, we get;
\[n\left( {{A^c} \cap {B^c}} \right) = 700 - 300 - 200 + 100\]
\[n\left( {{A^c} \cap {B^c}} \right) = 300\]
The correct answer is option C.
Note:
Students often make mistakes when they apply De Morgan’s formula. They used a wrong formula that is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cap B} \right)^c}\]. The correct formula is \[\left( {{A^c} \cap {B^c}} \right) = {\left( {A \cup B} \right)^c}\].
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

