
Find ${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)=$
A. \[2\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.....\infty \right]\]
B. \[\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.....\infty \right]\]
C. \[2\left[ \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+...\infty \right]\]
D. \[\left[ \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+...\infty \right]\]
Answer
162.6k+ views
Hint: In this question, we are to find the subtraction of two logarithmic functions. For this, we need to know the logarithm properties. By applying them to the given logarithmic expression, we get the required value and its expansion.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given that the required subtraction between two logarithmic functions is
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)\text{ }...(1)$
We have the property of logarithm as
$\log a-\log b=\log \left( \dfrac{a}{b} \right)$
So, by applying this to (1), we get
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right)$
On simplifying, we get
$\begin{align}
& {{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right) \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}} \right)\text{ }...(2) \\
\end{align}$
But we have,
${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
Here, if we consider $x=\dfrac{1}{x}$, we get
$\begin{align}
& {{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right) \\
& \Rightarrow {{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{3}}}{3}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{5}}}{5}+... \right) \\
\end{align}$
On simplifying the above expansion, we get
${{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)\text{ }...(3)$
So, from (2) and (3), the given expression at (1) becomes
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Option ‘C’ is correct
Note: Here, the given question is a direct formula. For solving such formulae, we just need to know the basic properties of logarithms. Here we use the division property of the logarithm. That means the given subtraction operation got changed to the division operation. By applying the predefined formula by changing only the variable, we get the required answer. For this type of question, simply we need to apply the properties for changing the sign and the variables in the formulae we already have.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given that the required subtraction between two logarithmic functions is
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)\text{ }...(1)$
We have the property of logarithm as
$\log a-\log b=\log \left( \dfrac{a}{b} \right)$
So, by applying this to (1), we get
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right)$
On simplifying, we get
$\begin{align}
& {{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right) \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}} \right)\text{ }...(2) \\
\end{align}$
But we have,
${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
Here, if we consider $x=\dfrac{1}{x}$, we get
$\begin{align}
& {{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right) \\
& \Rightarrow {{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{3}}}{3}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{5}}}{5}+... \right) \\
\end{align}$
On simplifying the above expansion, we get
${{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)\text{ }...(3)$
So, from (2) and (3), the given expression at (1) becomes
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Option ‘C’ is correct
Note: Here, the given question is a direct formula. For solving such formulae, we just need to know the basic properties of logarithms. Here we use the division property of the logarithm. That means the given subtraction operation got changed to the division operation. By applying the predefined formula by changing only the variable, we get the required answer. For this type of question, simply we need to apply the properties for changing the sign and the variables in the formulae we already have.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
