
Find ${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)=$
A. \[2\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.....\infty \right]\]
B. \[\left[ x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+.....\infty \right]\]
C. \[2\left[ \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+...\infty \right]\]
D. \[\left[ \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+...\infty \right]\]
Answer
233.1k+ views
Hint: In this question, we are to find the subtraction of two logarithmic functions. For this, we need to know the logarithm properties. By applying them to the given logarithmic expression, we get the required value and its expansion.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given that the required subtraction between two logarithmic functions is
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)\text{ }...(1)$
We have the property of logarithm as
$\log a-\log b=\log \left( \dfrac{a}{b} \right)$
So, by applying this to (1), we get
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right)$
On simplifying, we get
$\begin{align}
& {{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right) \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}} \right)\text{ }...(2) \\
\end{align}$
But we have,
${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
Here, if we consider $x=\dfrac{1}{x}$, we get
$\begin{align}
& {{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right) \\
& \Rightarrow {{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{3}}}{3}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{5}}}{5}+... \right) \\
\end{align}$
On simplifying the above expansion, we get
${{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)\text{ }...(3)$
So, from (2) and (3), the given expression at (1) becomes
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Option ‘C’ is correct
Note: Here, the given question is a direct formula. For solving such formulae, we just need to know the basic properties of logarithms. Here we use the division property of the logarithm. That means the given subtraction operation got changed to the division operation. By applying the predefined formula by changing only the variable, we get the required answer. For this type of question, simply we need to apply the properties for changing the sign and the variables in the formulae we already have.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given that the required subtraction between two logarithmic functions is
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)\text{ }...(1)$
We have the property of logarithm as
$\log a-\log b=\log \left( \dfrac{a}{b} \right)$
So, by applying this to (1), we get
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right)$
On simplifying, we get
$\begin{align}
& {{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\left( \dfrac{x+1}{x-1} \right) \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}} \right)\text{ }...(2) \\
\end{align}$
But we have,
${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
Here, if we consider $x=\dfrac{1}{x}$, we get
$\begin{align}
& {{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right) \\
& \Rightarrow {{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{3}}}{3}+\dfrac{{{\left( {}^{1}/{}_{x} \right)}^{5}}}{5}+... \right) \\
\end{align}$
On simplifying the above expansion, we get
${{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)\text{ }...(3)$
So, from (2) and (3), the given expression at (1) becomes
${{\log }_{e}}(x+1)-{{\log }_{e}}(x-1)={{\log }_{e}}\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Option ‘C’ is correct
Note: Here, the given question is a direct formula. For solving such formulae, we just need to know the basic properties of logarithms. Here we use the division property of the logarithm. That means the given subtraction operation got changed to the division operation. By applying the predefined formula by changing only the variable, we get the required answer. For this type of question, simply we need to apply the properties for changing the sign and the variables in the formulae we already have.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

