
Find ${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=$
A. $\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty $
B. $\dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty $
C. $2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty \right]$
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the expression of a series. For this, we need to apply the logarithmic series formulae. By rewriting the expression into the form of a logarithmic series, we can evaluate the given expression.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

