
Find ${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=$
A. $\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty $
B. $\dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty $
C. $2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty \right]$
D. None of these
Answer
218.7k+ views
Hint: In this question, we are to find the expression of a series. For this, we need to apply the logarithmic series formulae. By rewriting the expression into the form of a logarithmic series, we can evaluate the given expression.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

