
Find ${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=$
A. $\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty $
B. $\dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty $
C. $2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty \right]$
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the expression of a series. For this, we need to apply the logarithmic series formulae. By rewriting the expression into the form of a logarithmic series, we can evaluate the given expression.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

