
Find ${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=$
A. $\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{4}}}{4}+\dfrac{{{x}^{6}}}{6}+...\infty $
B. $\dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty $
C. $2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+....\infty \right]$
D. None of these
Answer
162.9k+ views
Hint: In this question, we are to find the expression of a series. For this, we need to apply the logarithmic series formulae. By rewriting the expression into the form of a logarithmic series, we can evaluate the given expression.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]$
By applying the properties of logarithm $\log {{(a)}^{n}}=n\log a$ and $\log xy=\log x+\log y$, we can rewrite the given series as
$\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right] \\
& \Rightarrow (1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x)\text{ }...(1) \\
\end{align}$
But we have logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}...(3) \\
\end{align}$
Thus, on substituting these values (2) and (3) into the given logarithmic function at (1), we get
\[\begin{align}
& {{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=(1+x){{\log }_{e}}(1+x)+(1-x){{\log }_{e}}(1-x) \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+(1-x)\left[ -x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}... \right] \\
& \Rightarrow (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& (1+x)\left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]-(1-x)\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right] \\
& \Rightarrow \left[ x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}-\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}-\dfrac{{{x}^{5}}}{4}+... \right]-\left[ x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right]+\left[ {{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{5}}}{4}+... \right] \\
& \Rightarrow 2\left( -\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{4}}}{4}-\dfrac{{{x}^{6}}}{6}-.... \right)+2\left( {{x}^{2}}+\dfrac{{{x}^{4}}}{3}+\dfrac{{{x}^{6}}}{5}+... \right) \\
& \Rightarrow 2\left( {{x}^{2}}\left( \dfrac{1}{1}-\dfrac{1}{2} \right)+{{x}^{4}}\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+{{x}^{6}}\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.... \right) \\
& \Rightarrow 2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right] \\
\end{align}\]
Thus, the given expression is
${{\log }_{e}}\left[ {{(1+x)}^{1+x}}{{(1-x)}^{1-x}} \right]=2\left[ \dfrac{{{x}^{2}}}{1\cdot 2}+\dfrac{{{x}^{4}}}{3\cdot 4}+\dfrac{{{x}^{6}}}{5\cdot 6}+... \right]$
Option ‘C’ is correct
Note: In this question, we are to evaluate the given expression. Here, the expression is formed with the logarithmic functions. By writing their expansion and simplifying them, we get the required expansion of the given expression. For this, we need to remember the basic logarithmic series and logarithmic properties. By applying them to the given expression, we can expand it into the required series. Here, the properties of logarithms like multiplication property and power property are used for rewriting the given expression. Then we can substitute the series in place of a logarithmic function. Then, by simplifying, we get the required series.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
