
Find $\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty $
A. \[{{\log }_{e}}x\]
B. \[{{\log }_{e}}(1+x)\]
C. \[{{\log }_{e}}(1-x)\]
D. \[{{\log }_{e}}\dfrac{x}{1+x}\]
Answer
163.8k+ views
Hint: In this question, we are to find the sum of the given series. To solve this, the given series is to be rewritten in such a way that we can frame the series into a particular progression. So, by applying the appropriate formula, the required sum is to be calculated.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty $
Rewriting the given series as
\[\begin{align}
& \Rightarrow \left( \dfrac{x}{x+1}-\dfrac{1}{x+1} \right)+\dfrac{1}{2}\left( \dfrac{{{x}^{2}}}{{{(x+1)}^{2}}}-\dfrac{1}{{{(x+1)}^{2}}} \right)+\dfrac{1}{3}\left( \dfrac{{{x}^{3}}}{{{(x+1)}^{3}}}-\dfrac{1}{{{(x+1)}^{3}}} \right)+.....\infty \\
& \Rightarrow \left( \dfrac{x}{x+1}+\dfrac{1}{2}{{\left( \dfrac{x}{x+1} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{x}{x+1} \right)}^{3}}+....\infty \right)-\left( \dfrac{1}{x+1}+\dfrac{1}{2\cdot {{(x+1)}^{2}}}+\dfrac{1}{3\cdot {{(x+1)}^{3}}}+...\infty \right) \\
\end{align}\]
Then, we can write it as
\[\Rightarrow \left( \dfrac{x}{x+1}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{3}}}{3}+...\infty \right)-\left( \dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{3}+...\infty \right)\]
These are the logarithmic sequences. So, we can use the formula:
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...\infty \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....\infty \\
\end{align}$
So, on applying this formula to the above two sequences, we get
\[\Rightarrow \left( \dfrac{x}{x+1}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{3}}}{3}+...\infty \right)=-{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)\]
$\Rightarrow \left( \dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{3}+...\infty \right)=-{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right)$
Then, the given series becomes,
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty =-{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)+{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right)$
On simplifying, we get
$\begin{align}
& -{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)+{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x+1-x}{x+1} \right)+{{\log }_{e}}\left( \dfrac{x+1-1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{1}{x+1} \right)+{{\log }_{e}}\left( \dfrac{x}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}(1)+{{\log }_{e}}(x+1)+{{\log }_{e}}(x)-{{\log }_{e}}(x+1) \\
& \Rightarrow {{\log }_{e}}x \\
\end{align}$
Therefore, the sum is
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty ={{\log }_{e}}x$
Option ‘A’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of two logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty $
Rewriting the given series as
\[\begin{align}
& \Rightarrow \left( \dfrac{x}{x+1}-\dfrac{1}{x+1} \right)+\dfrac{1}{2}\left( \dfrac{{{x}^{2}}}{{{(x+1)}^{2}}}-\dfrac{1}{{{(x+1)}^{2}}} \right)+\dfrac{1}{3}\left( \dfrac{{{x}^{3}}}{{{(x+1)}^{3}}}-\dfrac{1}{{{(x+1)}^{3}}} \right)+.....\infty \\
& \Rightarrow \left( \dfrac{x}{x+1}+\dfrac{1}{2}{{\left( \dfrac{x}{x+1} \right)}^{2}}+\dfrac{1}{3}{{\left( \dfrac{x}{x+1} \right)}^{3}}+....\infty \right)-\left( \dfrac{1}{x+1}+\dfrac{1}{2\cdot {{(x+1)}^{2}}}+\dfrac{1}{3\cdot {{(x+1)}^{3}}}+...\infty \right) \\
\end{align}\]
Then, we can write it as
\[\Rightarrow \left( \dfrac{x}{x+1}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{3}}}{3}+...\infty \right)-\left( \dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{3}+...\infty \right)\]
These are the logarithmic sequences. So, we can use the formula:
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...\infty \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+....\infty \\
\end{align}$
So, on applying this formula to the above two sequences, we get
\[\Rightarrow \left( \dfrac{x}{x+1}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{x}{x+1} \right)}^{3}}}{3}+...\infty \right)=-{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)\]
$\Rightarrow \left( \dfrac{1}{x+1}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{1}{x+1} \right)}^{2}}}{3}+...\infty \right)=-{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right)$
Then, the given series becomes,
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty =-{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)+{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right)$
On simplifying, we get
$\begin{align}
& -{{\log }_{e}}\left( 1-\dfrac{x}{x+1} \right)+{{\log }_{e}}\left( 1-\dfrac{1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{x+1-x}{x+1} \right)+{{\log }_{e}}\left( \dfrac{x+1-1}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{1}{x+1} \right)+{{\log }_{e}}\left( \dfrac{x}{x+1} \right) \\
& \Rightarrow -{{\log }_{e}}(1)+{{\log }_{e}}(x+1)+{{\log }_{e}}(x)-{{\log }_{e}}(x+1) \\
& \Rightarrow {{\log }_{e}}x \\
\end{align}$
Therefore, the sum is
$\dfrac{x-1}{(x+1)}+\dfrac{1}{2}\cdot \dfrac{{{x}^{2}}-1}{{{(x+1)}^{2}}}+\dfrac{1}{3}\cdot \dfrac{{{x}^{3}}-1}{{{(x+1)}^{3}}}+.....\infty ={{\log }_{e}}x$
Option ‘A’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of two logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
