
Find $\dfrac{1}{2}+\dfrac{3}{2}\cdot \dfrac{1}{4}+\dfrac{5}{3}\cdot \dfrac{1}{8}+\dfrac{7}{4}\cdot \dfrac{1}{16}+....\infty =$
A. $2-{{\log }_{e}}2$
B. $2+{{\log }_{e}}2$
C. ${{\log }_{e}}4$
D. None of these
Answer
218.7k+ views
Hint: In this question, we are to find the sum of the given series. To solve this, the given series is to be rewritten in such a way that we can frame the series into a particular progression. So, by applying the appropriate formula, the required sum is to be calculated.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{2}+\dfrac{3}{2}\cdot \dfrac{1}{4}+\dfrac{5}{3}\cdot \dfrac{1}{8}+\dfrac{7}{4}\cdot \dfrac{1}{16}+....\infty $
Rewriting the above series as
\[\begin{align}
& \Rightarrow \dfrac{1}{1}\cdot \dfrac{1}{{{2}^{1}}}+\dfrac{3}{2}\cdot \dfrac{1}{{{2}^{2}}}+\dfrac{5}{3}\cdot \dfrac{1}{{{2}^{3}}}+\dfrac{7}{4}\cdot \dfrac{1}{{{2}^{4}}}+....\infty \\
& \Rightarrow \left( 2-\dfrac{1}{1} \right)\dfrac{1}{2}+\left( 2-\dfrac{1}{2} \right)\dfrac{1}{{{2}^{2}}}+\left( 2-\dfrac{1}{3} \right)\dfrac{1}{{{2}^{3}}}+....\infty \\
& \Rightarrow 2\left\{ \dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty \right\}-\left\{ \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty \right\} \\
\end{align}\]
The first sequence is in geometric progression. So, we can find its sum by the formula
${{S}_{\infty }}=\dfrac{a}{1-r}$
Then,
\[\dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty =\dfrac{\dfrac{1}{2}}{1-\dfrac{1}{2}}=1\]
And the second sequence represents a logarithmic series. So, we can use the formula,
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
That is,
\[\begin{align}
& \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty =-{{\log }_{e}}(1-\dfrac{1}{2}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\log }_{e}}2 \\
\end{align}\]
Thus, on substituting these values in the rewritten sequence, we get
\[\begin{align}
& \dfrac{1}{1}\cdot \dfrac{1}{{{2}^{1}}}+\dfrac{3}{2}\cdot \dfrac{1}{{{2}^{2}}}+\dfrac{5}{3}\cdot \dfrac{1}{{{2}^{3}}}+\dfrac{7}{4}\cdot \dfrac{1}{{{2}^{4}}}+....\infty \\
& =2\left\{ \dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty \right\}-\left\{ \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty \right\} \\
& \Rightarrow 2(1)-{{\log }_{e}}2 \\
& \Rightarrow 2-{{\log }_{e}}2 \\
\end{align}\]
Option ‘A’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of the geometric series and the logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{2}+\dfrac{3}{2}\cdot \dfrac{1}{4}+\dfrac{5}{3}\cdot \dfrac{1}{8}+\dfrac{7}{4}\cdot \dfrac{1}{16}+....\infty $
Rewriting the above series as
\[\begin{align}
& \Rightarrow \dfrac{1}{1}\cdot \dfrac{1}{{{2}^{1}}}+\dfrac{3}{2}\cdot \dfrac{1}{{{2}^{2}}}+\dfrac{5}{3}\cdot \dfrac{1}{{{2}^{3}}}+\dfrac{7}{4}\cdot \dfrac{1}{{{2}^{4}}}+....\infty \\
& \Rightarrow \left( 2-\dfrac{1}{1} \right)\dfrac{1}{2}+\left( 2-\dfrac{1}{2} \right)\dfrac{1}{{{2}^{2}}}+\left( 2-\dfrac{1}{3} \right)\dfrac{1}{{{2}^{3}}}+....\infty \\
& \Rightarrow 2\left\{ \dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty \right\}-\left\{ \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty \right\} \\
\end{align}\]
The first sequence is in geometric progression. So, we can find its sum by the formula
${{S}_{\infty }}=\dfrac{a}{1-r}$
Then,
\[\dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty =\dfrac{\dfrac{1}{2}}{1-\dfrac{1}{2}}=1\]
And the second sequence represents a logarithmic series. So, we can use the formula,
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
That is,
\[\begin{align}
& \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty =-{{\log }_{e}}(1-\dfrac{1}{2}) \\
& \Rightarrow -{{\log }_{e}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\log }_{e}}2 \\
\end{align}\]
Thus, on substituting these values in the rewritten sequence, we get
\[\begin{align}
& \dfrac{1}{1}\cdot \dfrac{1}{{{2}^{1}}}+\dfrac{3}{2}\cdot \dfrac{1}{{{2}^{2}}}+\dfrac{5}{3}\cdot \dfrac{1}{{{2}^{3}}}+\dfrac{7}{4}\cdot \dfrac{1}{{{2}^{4}}}+....\infty \\
& =2\left\{ \dfrac{1}{2}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{2}}}+....\infty \right\}-\left\{ \dfrac{\left( {}^{1}/{}_{2} \right)}{1}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{2} \right)}^{3}}}{3}+...\infty \right\} \\
& \Rightarrow 2(1)-{{\log }_{e}}2 \\
& \Rightarrow 2-{{\log }_{e}}2 \\
\end{align}\]
Option ‘A’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of the geometric series and the logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

