
Find $\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =$
A. ${{\log }_{e}}\sqrt{2}$
B. ${{\log }_{e}}2-\dfrac{1}{2}$
C. ${{\log }_{e}}2$
D. ${{\log }_{e}}4$
Answer
218.7k+ views
Hint: In this question, we are to find the sum of the given series. This is done by using logarithmic series. By substituting $x=1$ in the logarithmic series, we get a series of terms with that we can frame the required series. Then, on simplifying, we get the required sum.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

