
Find $\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =$
A. ${{\log }_{e}}\sqrt{2}$
B. ${{\log }_{e}}2-\dfrac{1}{2}$
C. ${{\log }_{e}}2$
D. ${{\log }_{e}}4$
Answer
164.1k+ views
Hint: In this question, we are to find the sum of the given series. This is done by using logarithmic series. By substituting $x=1$ in the logarithmic series, we get a series of terms with that we can frame the required series. Then, on simplifying, we get the required sum.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
