
Find $\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =$
A. ${{\log }_{e}}\sqrt{2}$
B. ${{\log }_{e}}2-\dfrac{1}{2}$
C. ${{\log }_{e}}2$
D. ${{\log }_{e}}4$
Answer
232.8k+ views
Hint: In this question, we are to find the sum of the given series. This is done by using logarithmic series. By substituting $x=1$ in the logarithmic series, we get a series of terms with that we can frame the required series. Then, on simplifying, we get the required sum.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$\dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty $
To solve this, we are using the logarithmic series.
The logarithmic series is written as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
On substituting $x=1$, we get
$\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \text{ }...(1) \\
& \Rightarrow {{\log }_{e}}2=\left( 1-\dfrac{1}{2} \right)+\left( \dfrac{1}{3}-\dfrac{1}{4} \right)+\left( \dfrac{1}{5}-\dfrac{1}{6} \right)+.....\infty \\
& \Rightarrow {{\log }_{e}}2=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \text{ }...(2) \\
\end{align}$
Equation (1) is also written as
\[\begin{align}
& {{\log }_{e}}(1+1)=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\left( \dfrac{1}{2}-\dfrac{1}{3} \right)-\left( \dfrac{1}{4}-\dfrac{1}{5} \right)-.....\infty \\
& \Rightarrow {{\log }_{e}}2=1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ }....(3) \\
\end{align}\]
On adding (2) and (3), we get
$\begin{align}
& {{\log }_{e}}2+{{\log }_{e}}2=\left( \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.....\infty \right)+\left( 1-\dfrac{1}{2\cdot 3}-\dfrac{1}{4\cdot 5}-.....\infty \text{ } \right) \\
& \Rightarrow 2{{\log }_{e}}2=1+\left( \dfrac{1}{1.2}-\dfrac{1}{2\cdot 3} \right)+\left( \dfrac{1}{3.4}-\dfrac{1}{4\cdot 5} \right)+....\infty \\
& \Rightarrow 2{{\log }_{e}}2-1=\left( \dfrac{2}{1\cdot 2\cdot 3} \right)+\left( \dfrac{2}{3\cdot 4\cdot 5} \right)+....\infty \\
& \Rightarrow \dfrac{1}{2}\left[ 2{{\log }_{e}}2-1 \right]=\left( \dfrac{1}{1\cdot 2\cdot 3} \right)+\left( \dfrac{1}{3\cdot 4\cdot 5} \right)+....\infty \text{ }...(4) \\
\end{align}$
Equation (4) represents the given series.
Thus, we can write
\[\begin{align}
& \dfrac{1}{1\cdot 2\cdot 3}+\dfrac{1}{3.4.5}+\dfrac{1}{5\cdot 6\cdot 7}+.....\infty =\dfrac{1}{2}\left[ 2{{\log }_{e}}-1 \right] \\
& \Rightarrow {{\log }_{e}}2-\dfrac{1}{2} \\
\end{align}\]
Therefore, the sum is ${{\log }_{e}}2-\dfrac{1}{2}$.
Option ‘B’ is correct
Note: Here, we need to apply the logarithmic series formula, where we need to submit $x=1$. So, that we are able to simplify the terms and frame them in such a way that we get the given series. In this way, this type of question is to be solved. Here we need to remember that, the subtraction of two rational numbers will result in the product of their denominators. This is just a simple logic that taking L.C.M. But it is written in the product form. This is because the given question is in such a way.
Recently Updated Pages
Derivatives of Ammonia - Important Concepts and Tips for JEE

Degree of Dissociation in Chemistry: Concept, Formula & Examples

Cyclotron: Principles, Working & Uses Explained

Current Loop as a Magnetic Dipole: Concepts & Examples

Current and Potential Difference Explained Simply

Covalent Character in Ionic Compounds Important Concepts for JEE

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

