
Evaluate the value of \[\int_0^{\dfrac{\pi }{2}} {\log \sin xd} x\] .
A. \[ - \pi \log 2\]
B. \[\pi \log 2\]
C. \[ - \dfrac{\pi }{2}\log 2\]
D. \[\dfrac{\pi }{2}\log 2\]
Answer
163.5k+ views
Hint: The given question belongs to definite integral. By applying the below property of definite integral, we will solve the given integration.
Formula used:
Trigonometry ratios for complementary angle
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Property of definite integral:
1. \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
2. \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\]
Complete step by step solution:
Let \[I = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x\] …..(1)
Using the property 1 in the given integration
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)d} x\]
We know that \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]. Applying complementary formula
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \cos xd} x\] ….(2)
Now we will add equation (1) and (2)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x + \int_0^{\dfrac{\pi }{2}} {\log \cos xd} x\]
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\left( {\log \sin x + \log \cos x} \right)d} x\]
Now applying the product rule of logarithm
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x\cos x} \right)d} x\] [Since \[\log a + \log b = \log ab\]]
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)d} x\]
Now applying double angle formula
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)d} x\] [ Since \[2\sin x\cos x = \sin 2x\]]
Applying the quotient rule of logarithm
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \] [Since \[\log a - \log b = \log \dfrac{a}{b}\]]
Let \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\].
Now we will solve \[{I_1}\].
Assume that \[2x = t\]
Differentiate both sides
\[2dx = dt\]
Changing the limits
If x = 0 then t = 0
If \[x = \dfrac{\pi}{2} \] then \[ t = \pi \]
Now substitute \[2dx = dt\] and \[2x = t\] in \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\]
\[{I_1} = \int_0^\pi {\log \sin t\dfrac{{dt}}{2}} \]
\[ \Rightarrow {I_1} = \dfrac{1}{2}\int_0^\pi {\log \sin tdt} \]
We know that \[\sin \theta = \sin \left( {\pi - \theta } \right)\].
Since \[\log \sin t = \log \sin \left( {\pi - t} \right)\], so we can apply the formula \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\].
\[{I_1} = \dfrac{1}{2} \times 2\int_0^{\dfrac{\pi }{2}} {\log \sin td} t\]
\[ \Rightarrow {I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin td} t\]
\[ \Rightarrow {I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x\] [Since \[\int_b^a {f\left( x \right)d} x = \int_b^a {f\left( t \right)d} t\]]
\[ \Rightarrow {I_1} = I\]
\[ \Rightarrow \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x = I\] [Since \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\]]
Putting \[\int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x = I\] in the equation \[2I = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[2I = I - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[ \Rightarrow 2I - I = - \log 2\int_0^{\dfrac{\pi }{2}} {dx} \]
\[ \Rightarrow 2I - I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Hence option C is the correct option
Note: Many students often confused with the formulas \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\] and \[\int_0^{2a} {f\left( x \right)dx} = \begin{array}{*{20}{c}}0&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\]. The correct formulas are \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\] and \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = - f\left( x \right)}\end{array}\].
Formula used:
Trigonometry ratios for complementary angle
\[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
Property of definite integral:
1. \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]
2. \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\]
Complete step by step solution:
Let \[I = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x\] …..(1)
Using the property 1 in the given integration
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)d} x\]
We know that \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]. Applying complementary formula
\[ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \cos xd} x\] ….(2)
Now we will add equation (1) and (2)
\[I + I = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x + \int_0^{\dfrac{\pi }{2}} {\log \cos xd} x\]
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\left( {\log \sin x + \log \cos x} \right)d} x\]
Now applying the product rule of logarithm
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x\cos x} \right)d} x\] [Since \[\log a + \log b = \log ab\]]
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x\cos x}}{2}} \right)d} x\]
Now applying double angle formula
\[ \Rightarrow I + I = \int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{\sin 2x}}{2}} \right)d} x\] [ Since \[2\sin x\cos x = \sin 2x\]]
Applying the quotient rule of logarithm
\[ \Rightarrow 2I = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \] [Since \[\log a - \log b = \log \dfrac{a}{b}\]]
Let \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\].
Now we will solve \[{I_1}\].
Assume that \[2x = t\]
Differentiate both sides
\[2dx = dt\]
Changing the limits
If x = 0 then t = 0
If \[x = \dfrac{\pi}{2} \] then \[ t = \pi \]
Now substitute \[2dx = dt\] and \[2x = t\] in \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\]
\[{I_1} = \int_0^\pi {\log \sin t\dfrac{{dt}}{2}} \]
\[ \Rightarrow {I_1} = \dfrac{1}{2}\int_0^\pi {\log \sin tdt} \]
We know that \[\sin \theta = \sin \left( {\pi - \theta } \right)\].
Since \[\log \sin t = \log \sin \left( {\pi - t} \right)\], so we can apply the formula \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\].
\[{I_1} = \dfrac{1}{2} \times 2\int_0^{\dfrac{\pi }{2}} {\log \sin td} t\]
\[ \Rightarrow {I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin td} t\]
\[ \Rightarrow {I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin xd} x\] [Since \[\int_b^a {f\left( x \right)d} x = \int_b^a {f\left( t \right)d} t\]]
\[ \Rightarrow {I_1} = I\]
\[ \Rightarrow \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x = I\] [Since \[{I_1} = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x\]]
Putting \[\int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x = I\] in the equation \[2I = \int_0^{\dfrac{\pi }{2}} {\log \sin 2xd} x - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[2I = I - \int_0^{\dfrac{\pi }{2}} {\log 2dx} \]
\[ \Rightarrow 2I - I = - \log 2\int_0^{\dfrac{\pi }{2}} {dx} \]
\[ \Rightarrow 2I - I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}\]
\[ \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]\]
\[ \Rightarrow I = - \dfrac{\pi }{2}\log 2\]
Hence option C is the correct option
Note: Many students often confused with the formulas \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\] and \[\int_0^{2a} {f\left( x \right)dx} = \begin{array}{*{20}{c}}0&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\]. The correct formulas are \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = f\left( x \right)}\end{array}\] and \[\int_0^{2a} {f\left( x \right)dx} = 2\begin{array}{*{20}{c}}{\int_0^a {f\left( x \right)dx} }&{i{\rm{f}}\,f\left( {2a - x} \right) = - f\left( x \right)}\end{array}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
