
Evaluate $\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=$
A. $0$
B. $1$
C. ${{e}^{{}^{1}/{}_{2}}}$
D. $2{{e}^{{}^{1}/{}_{2}}}$
Answer
164.1k+ views
Hint: In this question, we are to find the given integral. A definite integral is easily evaluated by using its properties. One such property applied for the given integral is even and odd function integral. Depending on the type of the function, the integral is evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
