
Evaluate $\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=$
A. $0$
B. $1$
C. ${{e}^{{}^{1}/{}_{2}}}$
D. $2{{e}^{{}^{1}/{}_{2}}}$
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. A definite integral is easily evaluated by using its properties. One such property applied for the given integral is even and odd function integral. Depending on the type of the function, the integral is evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

