
Evaluate $\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=$
A. $0$
B. $1$
C. ${{e}^{{}^{1}/{}_{2}}}$
D. $2{{e}^{{}^{1}/{}_{2}}}$
Answer
164.1k+ views
Hint: In this question, we are to find the given integral. A definite integral is easily evaluated by using its properties. One such property applied for the given integral is even and odd function integral. Depending on the type of the function, the integral is evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Formula Used:
Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Given integral is
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx$
Consider the given function as
$f(x)=(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]$
To evaluate the given integral, we need to know the type of the function.
So, substituting $x=-x$ in the given function $f(x)$
Then,
$\begin{align}
& f(-x)=(\cos (-x))\left[ \log \left( \dfrac{1-(-x)}{1+(-x)} \right) \right] \\
& \text{ }=(\cos x)\left[ \log \left( \dfrac{1+x}{1-x} \right) \right] \\
& \text{ }=(\cos x)\left[ \log (1+x)-\log (1-x) \right] \\
& \text{ }=-(\cos x)\left[ \log (1-x)-\log (1+x) \right] \\
& \text{ }=-(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right] \\
& \text{ }=-f(x) \\
\end{align}$
Since $f(x)=-f(x)$, the function in the given integral is an odd function.
So, by the property, we have
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
Therefore,
$I=\int\limits_{{}^{-1}/{}_{2}}^{{}^{1}/{}_{2}}{(\cos x)\left[ \log \left( \dfrac{1-x}{1+x} \right) \right]}dx=0$
Option ‘A’ is correct
Note: Here we need to remember that, to apply this property, first we need to check the interval of the integral. If the interval is in the form of $[-a,a]$, then the function in the integral is to be verified for the type of the function by substituting $x=-x$. Thus, depending on the type of function, the integration is to be evaluated.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
