
Drift velocity of electrons is due to
A) Motion of conduction electrons due to random collisions.
B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
C) Repulsion to the conduction electrons due to inner electrons of ions.
D) Collision of conduction electrons with each other.
Answer
162.9k+ views
Hint:This is a concept question from drift velocity. By Applying the definition of drift velocity we can find the right option.
Complete answer:
Drift velocity is the average velocity attained by charged particles, (electrons) in a material due to an electric field (\[\overrightarrow E \]). The SI unit of drift velocity is the same as velocity which is m/s.
Hence, the correct option is Option B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
Additional Information:
The relation between drift velocity and current is given below.
\[{v_d} = \dfrac{I}{{neA}}\]
\[{v_d}\]= drift velocity
I = current flow
n = free electron density
e = charge of an electron
A = cross sectional area
Mobility (\[\mu \]) of an electron is the drift velocity of an electron for a unit electric field (\[E\]). The equation for mobility is given below.
\[\mu = \dfrac{{{v_d}}}{E}\]
Current density is defined as the total amount of current passing through a unit cross-sectional conductor in unit time. The relation between drift velocity (\[{v_d}\]) and Current Density is given below.
\[J = \dfrac{I}{A} = \dfrac{{nA{v_d}e}}{A} = n{v_d}e\]
\[J = n{v_d}e\]
From this equation we can find that drift velocity and current density are directly proportional to each other.
Note: The drift velocity and current flowing through the conductor both increase as the intensity of the electric field increases. Drift velocity is directly proportional to electric field intensity.
Complete answer:
Drift velocity is the average velocity attained by charged particles, (electrons) in a material due to an electric field (\[\overrightarrow E \]). The SI unit of drift velocity is the same as velocity which is m/s.
Hence, the correct option is Option B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
Additional Information:
The relation between drift velocity and current is given below.
\[{v_d} = \dfrac{I}{{neA}}\]
\[{v_d}\]= drift velocity
I = current flow
n = free electron density
e = charge of an electron
A = cross sectional area
Mobility (\[\mu \]) of an electron is the drift velocity of an electron for a unit electric field (\[E\]). The equation for mobility is given below.
\[\mu = \dfrac{{{v_d}}}{E}\]
Current density is defined as the total amount of current passing through a unit cross-sectional conductor in unit time. The relation between drift velocity (\[{v_d}\]) and Current Density is given below.
\[J = \dfrac{I}{A} = \dfrac{{nA{v_d}e}}{A} = n{v_d}e\]
\[J = n{v_d}e\]
From this equation we can find that drift velocity and current density are directly proportional to each other.
Note: The drift velocity and current flowing through the conductor both increase as the intensity of the electric field increases. Drift velocity is directly proportional to electric field intensity.
Recently Updated Pages
Dynamics of Rotational Motion about a Fixed Axis for JEE Exam

Charge in a Magnetic Field - Important Concepts and Tips for JEE

Fluid Pressure - Important Concepts and Tips for JEE

Balancing a Chemical Equation by Oxidation Number Method for JEE

Hydrogen and Its Type Important Concepts and Tips for JEE Exam Preparation

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main
