
Drift velocity of electrons is due to
A) Motion of conduction electrons due to random collisions.
B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
C) Repulsion to the conduction electrons due to inner electrons of ions.
D) Collision of conduction electrons with each other.
Answer
218.4k+ views
Hint:This is a concept question from drift velocity. By Applying the definition of drift velocity we can find the right option.
Complete answer:
Drift velocity is the average velocity attained by charged particles, (electrons) in a material due to an electric field (\[\overrightarrow E \]). The SI unit of drift velocity is the same as velocity which is m/s.
Hence, the correct option is Option B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
Additional Information:
The relation between drift velocity and current is given below.
\[{v_d} = \dfrac{I}{{neA}}\]
\[{v_d}\]= drift velocity
I = current flow
n = free electron density
e = charge of an electron
A = cross sectional area
Mobility (\[\mu \]) of an electron is the drift velocity of an electron for a unit electric field (\[E\]). The equation for mobility is given below.
\[\mu = \dfrac{{{v_d}}}{E}\]
Current density is defined as the total amount of current passing through a unit cross-sectional conductor in unit time. The relation between drift velocity (\[{v_d}\]) and Current Density is given below.
\[J = \dfrac{I}{A} = \dfrac{{nA{v_d}e}}{A} = n{v_d}e\]
\[J = n{v_d}e\]
From this equation we can find that drift velocity and current density are directly proportional to each other.
Note: The drift velocity and current flowing through the conductor both increase as the intensity of the electric field increases. Drift velocity is directly proportional to electric field intensity.
Complete answer:
Drift velocity is the average velocity attained by charged particles, (electrons) in a material due to an electric field (\[\overrightarrow E \]). The SI unit of drift velocity is the same as velocity which is m/s.
Hence, the correct option is Option B) Motion of conduction electrons due to electric field \[\overrightarrow E \].
Additional Information:
The relation between drift velocity and current is given below.
\[{v_d} = \dfrac{I}{{neA}}\]
\[{v_d}\]= drift velocity
I = current flow
n = free electron density
e = charge of an electron
A = cross sectional area
Mobility (\[\mu \]) of an electron is the drift velocity of an electron for a unit electric field (\[E\]). The equation for mobility is given below.
\[\mu = \dfrac{{{v_d}}}{E}\]
Current density is defined as the total amount of current passing through a unit cross-sectional conductor in unit time. The relation between drift velocity (\[{v_d}\]) and Current Density is given below.
\[J = \dfrac{I}{A} = \dfrac{{nA{v_d}e}}{A} = n{v_d}e\]
\[J = n{v_d}e\]
From this equation we can find that drift velocity and current density are directly proportional to each other.
Note: The drift velocity and current flowing through the conductor both increase as the intensity of the electric field increases. Drift velocity is directly proportional to electric field intensity.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

