
Define the quality factor of resonance in the series LCR circuit.
Answer
148.5k+ views
Hint: first understand the LCR circuit. The sharpness of an LCR circuit is measured by the quality factor in an LCR circuit. LCR circuit consists of capacitor, inductor, resistor connected in series or parallel. Using phasor, we can understand the LCR circuit better. Using the above statement, we can define the quality factor.
Complete step by step solution:
Sharpness of an LCR circuit can be measured using the quality factor. The sharpness of an LCR circuit is measured by the quality factor in an LCR circuit. It is a dimensionless quantity. The larger the sharpness of resonance sharper is the Q factor. Resonance occurs in a circuit that is connected in series when the supply frequency causes the voltage across the inductor and capacitor to be equal.
The factor is the energy stored per unit cycle to the energy dissipated per cycle. Higher the factor means more energy is stored. The quality factor controls the damping of oscillations. It is underdamped if the Q factor is less than half. Oscillation will be sustained longer.
Q factor will be affected if there is a resistive loss. factor is a unitless dimensionless quantity. factor can be defined as to how quickly the energy of the oscillating system decays. When the sharpness increases then damping increases and when damping decreases the sharpness decreases.
is the quality factor, is the resistance, is the inductance. is the voltage across the inductor.
Note: Here in the solution we have used the potential across the inductor, but we can also use potential across the capacitor. factor is the energy stored per unit cycle to the energy dissipated per cycle. Higher the Q factor means more energy is stored. The quality factor controls the damping of oscillations. It is a dimensionless quantity.
Complete step by step solution:
Sharpness of an LCR circuit can be measured using the quality factor. The sharpness of an LCR circuit is measured by the quality factor in an LCR circuit. It is a dimensionless quantity. The larger the sharpness of resonance sharper is the Q factor. Resonance occurs in a circuit that is connected in series when the supply frequency causes the voltage across the inductor and capacitor to be equal.
The
Q factor will be affected if there is a resistive loss.
Note: Here in the solution we have used the potential across the inductor, but we can also use potential across the capacitor.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Uniform Acceleration

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor
