
Define critical angle with reference to the total internal reflection. Calculate the critical angle for glass-air surface if a ray of light which is incident in air on the glass surface is deviated through ${15^ \circ }$, when angle of incidence is ${45^ \circ }$.
Answer
144.3k+ views
Hint: If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection.
Formula Used:
The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
Complete step by step answer:
If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection. The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$ (1)
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction

Given the angle of incidence is ${45^ \circ }$and the refracted ray is deviated by ${15^ \circ }$.
Observe the figure above.
This means the angle of refraction can be calculated as,
$
r = {45^ \circ } - {15^ \circ } \\
= {30^ \circ } \\
$
Substituting the value of $i$ and $r$ in equation (2)
We get,
Refractive index as
$
n = \dfrac{{\sin \,{{45}^ \circ }}}{{\sin \,{{30}^ \circ }}} \\
= \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}} \\
= \sqrt 2 \\
$
Now using this value in equation 1 we get
$
\sin \,{i_c} = \dfrac{1}{n} \\
= \dfrac{1}{{\sqrt 2 }} \\
$
We need to find the angle ${i_c}$ therefore,
$
{i_c} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} \\
= {45^ \circ } \\
$
Critical Angle for glass air interface is ${45^ \circ }$.
Note: It is important to note that in this question angle of deviation is given instead of angle of refraction, we need to subtract the deviation from angle of incidence to find the angle of refraction and only then use it in Snell's Law.
Formula Used:
The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction
Complete step by step answer:
If a ray of light goes from a denser medium to rarer medium. There is a particular angle beyond which the light rays will no longer refract but will be reflected totally. This phenomenon is called total internal reflection. The angle beyond which light rays reflect totally is called the critical angle. It is denoted as ${i_c}$.
The relation between critical angle and refractive index of the medium is given as
$\sin \,{i_c} = \dfrac{1}{n}$ (1)
Where $n$ is the refractive index.
From Snell’s law we know that refractive index is the ratio of sine of angle of incidence to the sine of angle of refraction.
Therefore,
$n = \dfrac{{\sin \,i}}{{\sin \,r}}$ (2)
Where, $i$ is the angle of incidence and $r$ is the angle of refraction

Given the angle of incidence is ${45^ \circ }$and the refracted ray is deviated by ${15^ \circ }$.
Observe the figure above.
This means the angle of refraction can be calculated as,
$
r = {45^ \circ } - {15^ \circ } \\
= {30^ \circ } \\
$
Substituting the value of $i$ and $r$ in equation (2)
We get,
Refractive index as
$
n = \dfrac{{\sin \,{{45}^ \circ }}}{{\sin \,{{30}^ \circ }}} \\
= \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}}} \\
= \sqrt 2 \\
$
Now using this value in equation 1 we get
$
\sin \,{i_c} = \dfrac{1}{n} \\
= \dfrac{1}{{\sqrt 2 }} \\
$
We need to find the angle ${i_c}$ therefore,
$
{i_c} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }} \\
= {45^ \circ } \\
$
Critical Angle for glass air interface is ${45^ \circ }$.
Note: It is important to note that in this question angle of deviation is given instead of angle of refraction, we need to subtract the deviation from angle of incidence to find the angle of refraction and only then use it in Snell's Law.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
