Answer
Verified
81k+ views
HintDe Broglie wavelength of a particle is obtained by finding the ratio of Planck's constant wrt the momentum. Momentum is obtained by \[\sqrt {2 \times m \times KE} \]. And this momentum is used to obtain the De Broglie wavelength
Complete step-by-step solution
De Broglie stated that every moving particle will have a wavelength, which could even be so less that they are not felt or are treated negligible. These matter waves are given by the equation,
\[\lambda = \dfrac{h}{{mv}}\]
When an electron is accelerated by a potential of V, it gains some velocity or momentum. This momentum is given by
KE = energy gained through potential difference
As we know that KE can be expressed in terms of momentum as,
\[
\dfrac{{{p^2}}}{{2m}}{\text{ }} = {\text{ }}eV \\
p = \sqrt {2meV} \\
p = \sqrt {2x9.1x{{10}^{ - 31}}x1.6x{{10}^{ - 19}}x10000} \\
p = 5.396x{10^{ - 23}} \\
\]
Substituting the value of p in the de Broglie equation,
\[
\lambda = \dfrac{{6.626x{{10}^{ - 34}}}}{{5.396x{{10}^{ - 23}}}} = 1.22x{10^{ - 11}} \\
\lambda = 0.0122x{10^{ - 9}} = 0.0122nm \\
\]
Therefore the correct answer is option C
Note Matter waves are formed whenever an object moves, but it is difficult to observe them most of the time. Let’s say that we have a body \[m = 1\] kg and it is moving with velocity \[ = 10m/s\]. The obtained De Broglie wavelength = \[\lambda = .6 \ *{10^{ - 33}}m\]. This length is not just invisible to eyes but also invisible to all the devices in the world right now in 2020
Complete step-by-step solution
De Broglie stated that every moving particle will have a wavelength, which could even be so less that they are not felt or are treated negligible. These matter waves are given by the equation,
\[\lambda = \dfrac{h}{{mv}}\]
When an electron is accelerated by a potential of V, it gains some velocity or momentum. This momentum is given by
KE = energy gained through potential difference
As we know that KE can be expressed in terms of momentum as,
\[
\dfrac{{{p^2}}}{{2m}}{\text{ }} = {\text{ }}eV \\
p = \sqrt {2meV} \\
p = \sqrt {2x9.1x{{10}^{ - 31}}x1.6x{{10}^{ - 19}}x10000} \\
p = 5.396x{10^{ - 23}} \\
\]
Substituting the value of p in the de Broglie equation,
\[
\lambda = \dfrac{{6.626x{{10}^{ - 34}}}}{{5.396x{{10}^{ - 23}}}} = 1.22x{10^{ - 11}} \\
\lambda = 0.0122x{10^{ - 9}} = 0.0122nm \\
\]
Therefore the correct answer is option C
Note Matter waves are formed whenever an object moves, but it is difficult to observe them most of the time. Let’s say that we have a body \[m = 1\] kg and it is moving with velocity \[ = 10m/s\]. The obtained De Broglie wavelength = \[\lambda = .6 \ *{10^{ - 33}}m\]. This length is not just invisible to eyes but also invisible to all the devices in the world right now in 2020
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main