
$\cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$ is equal to
1. $1$
2. $0$
3. $2$
4. $ - 1$
Answer
160.8k+ views
Hint: Add at least four values in the last of the given sum. Apply trigonometric sign convention formula basically to make angles negative and eradicate some of them to minimize the values and easy to find the sum.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
