
$\cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$ is equal to
1. $1$
2. $0$
3. $2$
4. $ - 1$
Answer
220.5k+ views
Hint: Add at least four values in the last of the given sum. Apply trigonometric sign convention formula basically to make angles negative and eradicate some of them to minimize the values and easy to find the sum.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Other Pages
Cbse Class 11 Maths Notes Chapter 9 Straight Lines

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 - 2025-26

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

