
$\cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$ is equal to
1. $1$
2. $0$
3. $2$
4. $ - 1$
Answer
219.6k+ views
Hint: Add at least four values in the last of the given sum. Apply trigonometric sign convention formula basically to make angles negative and eradicate some of them to minimize the values and easy to find the sum.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

