
$\cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$ is equal to
1. $1$
2. $0$
3. $2$
4. $ - 1$
Answer
232.8k+ views
Hint: Add at least four values in the last of the given sum. Apply trigonometric sign convention formula basically to make angles negative and eradicate some of them to minimize the values and easy to find the sum.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Complete step by step solution: Given that,
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + ............ + \cos {177^ \circ } + \cos {178^ \circ } + \cos {179^ \circ } + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \cos \left( {{{180}^ \circ } - {{91}^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {{92}^ \circ }} \right) + ........ + \cos \left( {{{180}^ \circ } - {3^ \circ }} \right) + \cos \left( {{{180}^ \circ } - {2^ \circ }} \right) + \cos ({180^ \circ } - {1^ \circ }) + \cos {180^ \circ }$
$ = \cos {1^ \circ } + \cos {2^ \circ } + \cos {3^ \circ } + .... + \cos {89^ \circ } + \cos {90^ \circ } + \left( { - \cos {{89}^ \circ }} \right) + \left( { - \cos {{88}^ \circ }} \right) + ........ + \left( { - \cos {3^ \circ }} \right) + \left( { - \cos {2^ \circ }} \right) + \left( { - \cos {1^ \circ }} \right) + \cos {180^ \circ }$
Cancel all the like terms in the above equation
$ = \cos {90^ \circ } + \cos {180^ \circ }$
$ = 0 + ( - 1)$
$ = - 1$
Hence, the sum of Given terms $\cos {1^ \circ },\cos {2^ \circ },\cos {3^ \circ },............,\cos {180^ \circ }$ is equals to $ - 1$
$ \therefore$ Option (4) is the correct answer i.e., $ - 1$.
Note: While using the sign convention trigonometric formulas don’t get confused with the values make the sign convention graph then apply the formula and use correct signs carefully or keep the table of all the formulas with you and try to learn them.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

