
What is the contrapositive of the statement “If two triangles are identical, then these are similar.”?
A. If two triangles are not similar, then these are not identical.
B. If two triangles are not identical, then these are not similar.
C. If two triangles are not identical, then these are similar.
D. If two triangles are not similar, then these are identical.
Answer
153.9k+ views
Hint: Use the definition of the contrapositive concept of mathematical logic and convert the given statement into the contrapositive statement.
Formula used:
The contrapositive of a conditional statement, interchange the original hypothesis and the conclusion of the statement.
The negation of a statement is the opposite of the original statement.
The negation is represented by a symbol: \[\sim \]
Complete step by step solution:
The given statement is “If two triangles are identical, then these are similar.”
Let’s consider,
\[p:\] two triangles are identical
\[q:\] two triangles are similar
So, the symbolic representation of the given statement is: \[p \to q\]
Now apply the definition of the contrapositive concept of mathematical logic.
Then the contrapositive representation is: \[\sim q \to \sim p\]
The negation statements of the above statements are:
\[\sim p :\] two triangles are not similar
\[\sim q :\] two triangles are not identical
Therefore, the word representation of the contrapositive statement is,
\[\sim q \to \sim p\]: If two triangles are not similar, then these are not identical.
Hence the correct option is A.
Note: Students often get confused and consider contrapositive as the negation.
A contrapositive statement is a negation of terms of a converse statement.
Statement: \[a \to b\]
Contrapositive statement: \[\sim b \to \sim a\]
Formula used:
The contrapositive of a conditional statement, interchange the original hypothesis and the conclusion of the statement.
The negation of a statement is the opposite of the original statement.
The negation is represented by a symbol: \[\sim \]
Complete step by step solution:
The given statement is “If two triangles are identical, then these are similar.”
Let’s consider,
\[p:\] two triangles are identical
\[q:\] two triangles are similar
So, the symbolic representation of the given statement is: \[p \to q\]
Now apply the definition of the contrapositive concept of mathematical logic.
Then the contrapositive representation is: \[\sim q \to \sim p\]
The negation statements of the above statements are:
\[\sim p :\] two triangles are not similar
\[\sim q :\] two triangles are not identical
Therefore, the word representation of the contrapositive statement is,
\[\sim q \to \sim p\]: If two triangles are not similar, then these are not identical.
Hence the correct option is A.
Note: Students often get confused and consider contrapositive as the negation.
A contrapositive statement is a negation of terms of a converse statement.
Statement: \[a \to b\]
Contrapositive statement: \[\sim b \to \sim a\]
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Displacement-Time Graph and Velocity-Time Graph for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
