
What is the conclusion of Davison and Germer experiment on the nature of electrons?
Answer
218.1k+ views
Hint: The electron exhibits the particle mature as well as wave nature. The Davisson-Germer experiment validates the earlier hypothesis given by De-Broglie about the wave nature of electrons.
Complete step by step solution:
According to the conclusion obtained by Davisson-Germer experiment it was shown that electrons exhibit wave nature too. This conclusion supports the hypothesis given by De-Broglie regarding wave-particle duality of matter.
In this experiment the accelerated electron beam was bombarded on a Nickel crystal in vacuum from the electron gun. The electron gun is having a heated filament. Thus electrons were scattered and Bragg's law gave the angle of maximum scattering.
According to Bragg's law he states that when the x-ray is incident onto a crystal surface, its angle of incidence $\theta $, will reflect back with the same angle of scattering, $\theta $. And, when the path difference $\Delta x$ is equal to a whole number multiple of wavelength, constructive interference will occur.
$n\lambda =2d\sin \theta $
Therefore, according to the derivation of Bragg’s Law:
The equation explains the reason for reflection: X-ray beams from the Nickel crystals at particular angles of incidence.
In Bragg's equation, variable $d$ indicates the distance between the atomic layers of Nickel, and the variable $\lambda $ specifies the wavelength of the incident electron beam.
$n$ is an integer.
Note: Bragg was also awarded the Nobel Prize in Physics in 1915 for his contribution in the analysis of crystal structure using X-rays.
Diffraction has been developed to understand the structure of every state of matter by any beam like a beam of ions, protons, electrons, neutrons with a wavelength similar to the length between the molecular structures. And this diffraction gives the idea of duality in nature for electrons.
Complete step by step solution:
According to the conclusion obtained by Davisson-Germer experiment it was shown that electrons exhibit wave nature too. This conclusion supports the hypothesis given by De-Broglie regarding wave-particle duality of matter.
In this experiment the accelerated electron beam was bombarded on a Nickel crystal in vacuum from the electron gun. The electron gun is having a heated filament. Thus electrons were scattered and Bragg's law gave the angle of maximum scattering.
According to Bragg's law he states that when the x-ray is incident onto a crystal surface, its angle of incidence $\theta $, will reflect back with the same angle of scattering, $\theta $. And, when the path difference $\Delta x$ is equal to a whole number multiple of wavelength, constructive interference will occur.
$n\lambda =2d\sin \theta $
Therefore, according to the derivation of Bragg’s Law:
The equation explains the reason for reflection: X-ray beams from the Nickel crystals at particular angles of incidence.
In Bragg's equation, variable $d$ indicates the distance between the atomic layers of Nickel, and the variable $\lambda $ specifies the wavelength of the incident electron beam.
$n$ is an integer.
Note: Bragg was also awarded the Nobel Prize in Physics in 1915 for his contribution in the analysis of crystal structure using X-rays.
Diffraction has been developed to understand the structure of every state of matter by any beam like a beam of ions, protons, electrons, neutrons with a wavelength similar to the length between the molecular structures. And this diffraction gives the idea of duality in nature for electrons.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

