
Calculate the value of $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $.
A. ${}^{n + m + 1}{C_{n + 1}}$
B. ${}^{n + m + 2}{C_n}$
C. ${}^{n + m + 3}{C_{n - 1}}$
D. None of these
Answer
216k+ views
Hint: First we will expand $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $ by putting $r = 0,1,2, \cdots ,m$. Then calculate the value of ${}^n{C_0}$ and ${}^{n + 1}{C_1}$ by using the combination formula. By using the combination property we will add consecutive terms to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

