
Calculate the value of $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $.
A. ${}^{n + m + 1}{C_{n + 1}}$
B. ${}^{n + m + 2}{C_n}$
C. ${}^{n + m + 3}{C_{n - 1}}$
D. None of these
Answer
163.2k+ views
Hint: First we will expand $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $ by putting $r = 0,1,2, \cdots ,m$. Then calculate the value of ${}^n{C_0}$ and ${}^{n + 1}{C_1}$ by using the combination formula. By using the combination property we will add consecutive terms to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
