
Assertion
\[{{F}_{2}}\] and \[O_{2}^{2-}\] have bond order 1 while \[{{N}_{2}}\], CO and \[N{{O}^{+}}\] have bond order 3.
Reason
Higher the bond order, higher is the stability of the molecule.
(a)- Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
(b)- Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
(c)- Assertion is correct but Reason is incorrect
(d)- Both Assertion and Reason are incorrect
Answer
155.4k+ views
Hint:When the atomic orbitals overlap with each other in the region where density of electrons is high, the molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals. Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals.
Complete step by step solution:
The bond order is half of the difference between the total numbers of the bonding electrons
and antibonding electrons in the given molecule.
Formula to calculate Bond order: \[Bond\,Order=\dfrac{1}{2}\left( \begin{align}
& Electron\,in\,bonding\,molecular\,orbital- \\
& Electron\,in\,anti\,bonding\,molecular\,orbital \\
\end{align} \right)\]
Bond order of \[{{F}_{2}}\]:\[\begin{align}
& {{F}_{2}}=\sigma {{(1s)}^{2}}\sigma *{{(1s)}^{2}}\sigma {{(2s)}^{2}}\sigma *{{(2s)}^{2}}\sigma {{(2{{p}_{z}})}^{2}}\pi {{(2{{p}_{x}})}^{2}}\pi {{(2{{p}_{y}})}^{2}}\pi *{{(2{{p}_{x}})}^{2}}\pi *{{(2{{p}_{y}})}^{2}} \\
& Bond\,Order=\dfrac{10-8}{2}=1 \\
\end{align}\]
Similarly, we can calculate the bond order of \[O_{2}^{2-}\] by writing its molecular orbital configuration which is 1.
Bond order of \[{{N}_{2}}\]:
\[\begin{align}
& {{N}_{2}}=\sigma {{(1s)}^{2}}\sigma *{{(1s)}^{2}}\sigma {{(2s)}^{2}}\sigma *{{(2s)}^{2}}\sigma {{(2{{p}_{x}})}^{2}}\sigma {{(2{{p}_{y}})}^{2}}\sigma {{(2{{p}_{z}})}^{2}} \\
& Bond\,Order=\dfrac{10-4}{2}=3 \\
\end{align}\]
Similarly, we can calculate for CO and \[N{{O}^{+}}\], by again by writing its molecular orbital configuration which is 3.
So, the assertion is correct.
The bond order of a molecule is directly proportional to the stability of that molecule. With increasing bond order, the bond length is decreased. Consequently, the amount of energy to dissociate the shorter bond is higher than that of the larger bond. Hence, the bond order of a molecule is more stable.
So, the reason is correct.
Since, nothing is stated in the assertion about stability, the reason becomes unrelated to it. Therefore, the correct option is (b).
Note: If the bond order is low, there will be less attraction between electrons and this causes the atoms to be held together more loosely. As a result, they dissociate easily, meaning they are less stable.
Complete step by step solution:
The bond order is half of the difference between the total numbers of the bonding electrons
and antibonding electrons in the given molecule.
Formula to calculate Bond order: \[Bond\,Order=\dfrac{1}{2}\left( \begin{align}
& Electron\,in\,bonding\,molecular\,orbital- \\
& Electron\,in\,anti\,bonding\,molecular\,orbital \\
\end{align} \right)\]
Bond order of \[{{F}_{2}}\]:\[\begin{align}
& {{F}_{2}}=\sigma {{(1s)}^{2}}\sigma *{{(1s)}^{2}}\sigma {{(2s)}^{2}}\sigma *{{(2s)}^{2}}\sigma {{(2{{p}_{z}})}^{2}}\pi {{(2{{p}_{x}})}^{2}}\pi {{(2{{p}_{y}})}^{2}}\pi *{{(2{{p}_{x}})}^{2}}\pi *{{(2{{p}_{y}})}^{2}} \\
& Bond\,Order=\dfrac{10-8}{2}=1 \\
\end{align}\]
Similarly, we can calculate the bond order of \[O_{2}^{2-}\] by writing its molecular orbital configuration which is 1.
Bond order of \[{{N}_{2}}\]:
\[\begin{align}
& {{N}_{2}}=\sigma {{(1s)}^{2}}\sigma *{{(1s)}^{2}}\sigma {{(2s)}^{2}}\sigma *{{(2s)}^{2}}\sigma {{(2{{p}_{x}})}^{2}}\sigma {{(2{{p}_{y}})}^{2}}\sigma {{(2{{p}_{z}})}^{2}} \\
& Bond\,Order=\dfrac{10-4}{2}=3 \\
\end{align}\]
Similarly, we can calculate for CO and \[N{{O}^{+}}\], by again by writing its molecular orbital configuration which is 3.
So, the assertion is correct.
The bond order of a molecule is directly proportional to the stability of that molecule. With increasing bond order, the bond length is decreased. Consequently, the amount of energy to dissociate the shorter bond is higher than that of the larger bond. Hence, the bond order of a molecule is more stable.
So, the reason is correct.
Since, nothing is stated in the assertion about stability, the reason becomes unrelated to it. Therefore, the correct option is (b).
Note: If the bond order is low, there will be less attraction between electrons and this causes the atoms to be held together more loosely. As a result, they dissociate easily, meaning they are less stable.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NH4NO3 and NH4NO2 on heating decomposes in to A NO2 class 11 chemistry JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
