
What are the roots of the equation $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$?
A. $k\pi ,k \in I$
B. $2k\pi ,k \in I$
C. $\dfrac{{k\pi }}{2},k \in I$
D. None of these
Answer
163.2k+ views
Hint: First we will apply half-angle trigonometry identity to solve the given equation. Then apply the general solution of $\sin \theta $ to find the solution of the given equation.
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
