
What are the roots of the equation $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$?
A. $k\pi ,k \in I$
B. $2k\pi ,k \in I$
C. $\dfrac{{k\pi }}{2},k \in I$
D. None of these
Answer
221.4k+ views
Hint: First we will apply half-angle trigonometry identity to solve the given equation. Then apply the general solution of $\sin \theta $ to find the solution of the given equation.
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

