
Aqueous solution of \[HN{{O}_{3}}\], \[KOH\], \[C{{H}_{3}}COOH\], \[C{{H}_{3}}COONa\] of identical concentrations are provided. The pair(s) of solution which forms a buffer upon mixing are:
A. \[HN{{O}_{3}}\] and \[C{{H}_{3}}COOH\]
B. \[KOH\] \[C{{H}_{3}}COONa\]
C. \[HN{{O}_{3}}\] and \[C{{H}_{3}}COONa\]
D. \[C{{H}_{3}}COOH\] and \[C{{H}_{3}}COONa\]
Answer
414k+ views
Hint: As we know, the buffer solution is a mixture of a weak acid and a conjugate base and vice versa. A weak acid is one which doesn’t ionize fully when it is dissolved in water whereas a conjugate base is defined as in acid if the acidic part or \[{{H}^{+}}ion\] is removed and the remaining part of the acid molecule is called conjugate base.
Complete step by step answer:
Buffer solution used as keeping \[pH\] of solution at nearly constant by adding a little amount of strong acid or base.
When there is addition of some strong acid to an equilibrium solution (mixture of weak acid and its conjugate base) \[{{H}^{+}}ions\] are added then we can observe shift in equilibrium towards left in accordance with Le Chatelier’s Principle
\[HA{{H}^{+}}+{{A}^{-}}\]
Likewise, when there is addition of some strong alkali to the mixture then \[{{H}^{+}}ions\] concentration decreases.
\[O{{H}^{-}}+HA{{H}_{2}}O+{{A}^{-}}\]
As we know, there are three types of buffer solution which are as follows:
i) Acid Buffer: weak acid + its salt of strong base
ii) Basic Buffer: weak base + its salt of strong acid
iii) Neutral Buffer: Salt of weak acid and weak base
Now let us see which option can form buffer solution after mixing:
Option A: In option A it has a mixture of strong acid \[HN{{O}_{3}}\]and weak acid \[C{{H}_{3}}COOH\]. Therefore, it is not a buffer solution.
Option B: In option B it has a mixture of strong base \[KOH\]and salt of weak acid and strong base \[C{{H}_{3}}COONa\]. Therefore, it will also not give a buffer solution.
Option C: In option C, we can see here it has mixture of strong acid \[HN{{O}_{3}}\] and \[C{{H}_{3}}COONa\] its salt with a strong base. As we know, nitric acid is a strong acid, and buffers are made up of only weak acids and bases. Therefore, it will also not give a buffer solution.
\[HN{{O}_{3}}+C{{H}_{3}}COONa\to C{{H}_{3}}COOH+NaN{{O}_{3}}\]
Option D: As we already know that mixture of \[C{{H}_{3}}COOH\] and \[C{{H}_{3}}COONa\] is a buffer solution and it can only form when \[C{{H}_{3}}COONa\] remains unreacted.
Hence, it is concluded that the correct option is only (D).
Note: Remember, don’t confuse a relationship between the strength of an acid (or base) and the strength of its conjugate (or conjugate acid). The stronger the acid, the weaker its conjugate base. The weaker acid, the stronger its conjugate base. The stronger the base, the weaker its conjugate acid.
Complete step by step answer:
Buffer solution used as keeping \[pH\] of solution at nearly constant by adding a little amount of strong acid or base.
When there is addition of some strong acid to an equilibrium solution (mixture of weak acid and its conjugate base) \[{{H}^{+}}ions\] are added then we can observe shift in equilibrium towards left in accordance with Le Chatelier’s Principle
\[HA{{H}^{+}}+{{A}^{-}}\]
Likewise, when there is addition of some strong alkali to the mixture then \[{{H}^{+}}ions\] concentration decreases.
\[O{{H}^{-}}+HA{{H}_{2}}O+{{A}^{-}}\]
As we know, there are three types of buffer solution which are as follows:
i) Acid Buffer: weak acid + its salt of strong base
ii) Basic Buffer: weak base + its salt of strong acid
iii) Neutral Buffer: Salt of weak acid and weak base
Now let us see which option can form buffer solution after mixing:
Option A: In option A it has a mixture of strong acid \[HN{{O}_{3}}\]and weak acid \[C{{H}_{3}}COOH\]. Therefore, it is not a buffer solution.
Option B: In option B it has a mixture of strong base \[KOH\]and salt of weak acid and strong base \[C{{H}_{3}}COONa\]. Therefore, it will also not give a buffer solution.
Option C: In option C, we can see here it has mixture of strong acid \[HN{{O}_{3}}\] and \[C{{H}_{3}}COONa\] its salt with a strong base. As we know, nitric acid is a strong acid, and buffers are made up of only weak acids and bases. Therefore, it will also not give a buffer solution.
\[HN{{O}_{3}}+C{{H}_{3}}COONa\to C{{H}_{3}}COOH+NaN{{O}_{3}}\]
Option D: As we already know that mixture of \[C{{H}_{3}}COOH\] and \[C{{H}_{3}}COONa\] is a buffer solution and it can only form when \[C{{H}_{3}}COONa\] remains unreacted.
Hence, it is concluded that the correct option is only (D).
Note: Remember, don’t confuse a relationship between the strength of an acid (or base) and the strength of its conjugate (or conjugate acid). The stronger the acid, the weaker its conjugate base. The weaker acid, the stronger its conjugate base. The stronger the base, the weaker its conjugate acid.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Physics Average Value and RMS Value JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
