
An object is moving with speed ${v_0}$ towards a spherical mirror with radius of curvature $R$ , along the central axis of mirror. The speed of the image with respect to the mirror is ( $U$ is the distance of the object form mirror at any given time $t$ )
A. $ + \left( {\dfrac{R}{{U - 2R}}} \right)v_0^2$
B. $ - {\left( {\dfrac{R}{{2U - R}}} \right)^2}{v_0}$
C. $ - {\left( {\dfrac{R}{{U - 2R}}} \right)^2}{v_0}$
D. $ + \left( {\dfrac{R}{{2U - R}}} \right)v_0^2$
Answer
216.3k+ views
Hint: This problem can be solved by using mirror formula. The value of the focal length is always half of the radius of curvature. We need to differentiate the mirror formula w.r.t time. This can lead us to the solution to the above-mentioned problem.
Formula used:
1. Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
2. Focal length
$f = \dfrac{R}{2}$
where , R is Radius of curvature
Complete answer:
When we think about the case of mirror,
As we know the relation between focal length and radius of curvature, $f = \dfrac{R}{2}$ , putting the value in mirror formula,
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{2}{R}$
(because u and v are time dependent and R is a constant )
By differentiating both side with respect to t in the above equation, we get,
$\dfrac{{ - 1dv}}{{{v^2}dt}} + \left( {\dfrac{{ - 1}}{{{u^2}}}} \right)\dfrac{{du}}{{dt}} = 0$
As given in the question that, $\dfrac{{du}}{{dt}} = + {v_0}$ (rate of change of distance is speed)by putting the value in above equation,
$\dfrac{{dv}}{{dt}} = \dfrac{{ - {v^2}}}{{{u^2}}} \times ( + {v_0}) = \dfrac{{ - {v^2}{v_0}}}{{{u^2}}}$
As in above we get that,
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{2}{R}$
Since, taking the value of v from above equation,
$v = \dfrac{{Ru}}{{2u - R}}$
As putting v’s value in the differential equation,
$\dfrac{{dv}}{{dt}} = - {\left( {\dfrac{{Ru}}{{2u - R}}} \right)^2} \times \dfrac{{{v_0}}}{{{u^2}}}$
By doing further solution of the above equation, we get,
$\dfrac{{dv}}{{dt}} = - {\left( {\dfrac{R}{{2u - R}}} \right)^2}{v_0}$
Therefore, we get the correct answer as $ - {\left( {\dfrac{R}{{2U - R}}} \right)^2}{v_0}$ .
Hence, the correct option is (B).
Note: Before proceeding to solve this problem make sure to know the quotient rule of differentiation. Many make mistakes in this step. According to the Quotient Rule, the derivative of a quotient is the denominator times the numerator's derivative minus the numerator times the denominator's derivative, all divided by the denominator's square.
Formula used:
1. Mirror Formula:
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$ … (1)
Here, $f$ is the focal length of the mirror,
$u$ is the object distance and
$v$ is the image distance.
2. Focal length
$f = \dfrac{R}{2}$
where , R is Radius of curvature
Complete answer:
When we think about the case of mirror,
As we know the relation between focal length and radius of curvature, $f = \dfrac{R}{2}$ , putting the value in mirror formula,
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{2}{R}$
(because u and v are time dependent and R is a constant )
By differentiating both side with respect to t in the above equation, we get,
$\dfrac{{ - 1dv}}{{{v^2}dt}} + \left( {\dfrac{{ - 1}}{{{u^2}}}} \right)\dfrac{{du}}{{dt}} = 0$
As given in the question that, $\dfrac{{du}}{{dt}} = + {v_0}$ (rate of change of distance is speed)by putting the value in above equation,
$\dfrac{{dv}}{{dt}} = \dfrac{{ - {v^2}}}{{{u^2}}} \times ( + {v_0}) = \dfrac{{ - {v^2}{v_0}}}{{{u^2}}}$
As in above we get that,
$\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{2}{R}$
Since, taking the value of v from above equation,
$v = \dfrac{{Ru}}{{2u - R}}$
As putting v’s value in the differential equation,
$\dfrac{{dv}}{{dt}} = - {\left( {\dfrac{{Ru}}{{2u - R}}} \right)^2} \times \dfrac{{{v_0}}}{{{u^2}}}$
By doing further solution of the above equation, we get,
$\dfrac{{dv}}{{dt}} = - {\left( {\dfrac{R}{{2u - R}}} \right)^2}{v_0}$
Therefore, we get the correct answer as $ - {\left( {\dfrac{R}{{2U - R}}} \right)^2}{v_0}$ .
Hence, the correct option is (B).
Note: Before proceeding to solve this problem make sure to know the quotient rule of differentiation. Many make mistakes in this step. According to the Quotient Rule, the derivative of a quotient is the denominator times the numerator's derivative minus the numerator times the denominator's derivative, all divided by the denominator's square.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

