
An example of perfect diamagnetic is a superconductor. This implies that when a superconductor is put in magnetic field of intensity $B$, the magnetic field ${B_S}$ inside the superconductor will be such that:
A) ${B_S} = - B$
B) ${B_S} = 0$
C) ${B_S} = B$
D) ${B_S} < B$ but ${B_S} \ne 0$
Answer
154.8k+ views
Hint: Just keep in mind that a superconductor is said to be in the Meissner effect when there is no magnetic field inside it. Also. Meissner effect is originated when the current is induced in the superconductor to reject the magnetic field lines.
Complete step by step solution:
Firstly, A superconductor is a conductor that does not allow the magnetic field lines to pass through it. This effect of not allowing magnetic field lines to pass is known as Meissner’s effect. This effect happens because an induced current is set up inside the semiconductor so that on the application of an external magnetic field the superconductor faces zero resistance and the field produced by the induced current cancels the applied field.
Now, as we know, a diamagnetic substance tends to repel the magnetic field lines passing through it. Therefore, for the perfect semiconductor or superconductor, the field would not enter the superconductor. Hence, magnetic field lines inside the superconductor will be zero. Hence, we can say that the magnetic field inside the superconductor is ${B_S} = 0$ .
Hence, option (B) is the correct option.
Additional Information:
Now, we will know deeply about the Meissner effect. Meissner effect is the effect that rejects the magnetic field from the superconductor during the transition of the magnetic field to superconductor when it is cooled below its critical temperature.
Now, the Meissner effect has given a phenomenal explanation in which the electromagnetic free energy in a superconductor minimized provided that
${\Delta ^2}H = {\lambda ^{ - 2}}H$
Here, $H$ is the magnetic field and $\lambda $ is the penetration depth. This equation shows that the magnetic field in a superconductor decays exponentially. This process of exclusion of the magnetic field is the demonstration of the super demagnetisation.
Note: In the Meissner state, the total magnetic field will be very close to zero or deep around zero. When a magnetic field is applied to the superconductor, it rejects all the magnetic flux to enter it by producing the current near to its surface.
Complete step by step solution:
Firstly, A superconductor is a conductor that does not allow the magnetic field lines to pass through it. This effect of not allowing magnetic field lines to pass is known as Meissner’s effect. This effect happens because an induced current is set up inside the semiconductor so that on the application of an external magnetic field the superconductor faces zero resistance and the field produced by the induced current cancels the applied field.
Now, as we know, a diamagnetic substance tends to repel the magnetic field lines passing through it. Therefore, for the perfect semiconductor or superconductor, the field would not enter the superconductor. Hence, magnetic field lines inside the superconductor will be zero. Hence, we can say that the magnetic field inside the superconductor is ${B_S} = 0$ .
Hence, option (B) is the correct option.
Additional Information:
Now, we will know deeply about the Meissner effect. Meissner effect is the effect that rejects the magnetic field from the superconductor during the transition of the magnetic field to superconductor when it is cooled below its critical temperature.
Now, the Meissner effect has given a phenomenal explanation in which the electromagnetic free energy in a superconductor minimized provided that
${\Delta ^2}H = {\lambda ^{ - 2}}H$
Here, $H$ is the magnetic field and $\lambda $ is the penetration depth. This equation shows that the magnetic field in a superconductor decays exponentially. This process of exclusion of the magnetic field is the demonstration of the super demagnetisation.
Note: In the Meissner state, the total magnetic field will be very close to zero or deep around zero. When a magnetic field is applied to the superconductor, it rejects all the magnetic flux to enter it by producing the current near to its surface.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Wheatstone Bridge for JEE Main Physics 2025

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Three charges sqrt 2 mu C2sqrt 2 mu Cand sqrt 2 mu class 12 physics JEE_Main

The potential of A is 10V then the potential of B is class 12 physics JEE_Main

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An uncharged sphere of metal is placed inside a charged class 12 physics JEE_Main

Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

A signal of 5kHz frequency is amplitude modulated on class 12 physics JEE_Main
