
Three mediums of refractive indices ${\mu _1},{\mu _0}{\text{ and }}{\mu _2}$ are shown in the fig. $\left( {{\mu _1} > {\mu _0},{\text{ and }}{\mu _2} > {\mu _0}} \right)$. The lamps $A$ and $B$ are placed at the bottom and top of the first and third mediums of the same thickness. If the bottom layer of the middle medium is illuminated for a circle of half of the radius for which the upper layer of this medium is illuminated, the relationship between ${\mu _1}{\text{ and }}{\mu _2}$ is $\left( {given{\text{ }}{\mu _0} = 1} \right)$:

$\left( a \right){\text{ 2}}{\mu _2} = \sqrt {\mu _1^2 + 3} $
$\left( b \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 4} $
$\left( c \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 2} $
$\left( d \right){\text{ }}{\mu _2} = \sqrt {\mu _1^2 + 1} $
Answer
216.6k+ views
Hint First of all by using the formula which is $\operatorname{Sin} c = \dfrac{1}{\mu }$and from this we can now calculate the $\tan {c_1}$ and similarly we will calculate $\tan {c_2}$ and from this we will calculate the radius and them by morphing the distance $r$, we will get the relation between ${\mu _1}{\text{ and }}{\mu _2}$.
Formula used:
By using Snell’s law
$\operatorname{Sin} c = \dfrac{1}{\mu }$, and
$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$
Here, $\mu $ will be the refractive index.
Complete step by step solution
First of all, we will make the figure from the question and elaborate the figure. Here, by using the Pythagoras theorem we will mark the positions and find the angle between them. The height will be the same in both the mediums.

On elaborating the figure, by using the formula $\operatorname{Sin} c = \dfrac{1}{\mu }$and$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$.
Therefore by using the above, we get
$\tan {c_1} = \dfrac{r}{h}$
And here from the $r$will be given as
$ \Rightarrow r = h\tan {c_1}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow r = h \times \dfrac{1}{{\sqrt {\mu _1^2 - 1} }}$, we will let it equation $1$
Now also $\tan {c_2} = \dfrac{{2r}}{h}$
And here from the $r$will be given as
$ \Rightarrow 2r = h\tan {c_2}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow 2r = h \times \dfrac{1}{{\sqrt {\mu _2^2 - 1} }}$, we will let it equation $2$
Now on dividing the equation $1$and equation$2$, we get
$ \Rightarrow \dfrac{1}{2} = \dfrac{{\sqrt {\mu _2^2 - 1} }}{{\sqrt {\mu _1^2 - 1} }}$
Now on squaring both the sides, we get
$ \Rightarrow \dfrac{1}{4} = \dfrac{{\mu _2^2 - 1}}{{\mu _1^2 - 1}}$
So on doing the cross-multiplication, we get
$ \Rightarrow \mu _1^2 - 1 = 4\mu _2^2 - 4$
And solving the above equation by removing the square, we get
$ \Rightarrow 2{\mu _2} = \sqrt {\mu _1^2 + 3} $
Therefore, the relation between ${\mu _1}{\text{ and }}{\mu _2}$is$2{\mu _2} = \sqrt {\mu _1^2 + 3} $.
Hence, the option $\left( a \right)$is correct.
Note As we have seen that there is a very little bit of concept used for solving this question. The question more emphasizes the calculation and by using the properties of the refraction, we can answer it easily. We just have to use some Pythagoras rule and some trigonometric formulas to solve this.
Formula used:
By using Snell’s law
$\operatorname{Sin} c = \dfrac{1}{\mu }$, and
$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$
Here, $\mu $ will be the refractive index.
Complete step by step solution
First of all, we will make the figure from the question and elaborate the figure. Here, by using the Pythagoras theorem we will mark the positions and find the angle between them. The height will be the same in both the mediums.

On elaborating the figure, by using the formula $\operatorname{Sin} c = \dfrac{1}{\mu }$and$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$.
Therefore by using the above, we get
$\tan {c_1} = \dfrac{r}{h}$
And here from the $r$will be given as
$ \Rightarrow r = h\tan {c_1}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow r = h \times \dfrac{1}{{\sqrt {\mu _1^2 - 1} }}$, we will let it equation $1$
Now also $\tan {c_2} = \dfrac{{2r}}{h}$
And here from the $r$will be given as
$ \Rightarrow 2r = h\tan {c_2}$
Now by substituting the value$\tan c = \dfrac{1}{{\sqrt {{\mu ^2} - 1} }}$, we get
$ \Rightarrow 2r = h \times \dfrac{1}{{\sqrt {\mu _2^2 - 1} }}$, we will let it equation $2$
Now on dividing the equation $1$and equation$2$, we get
$ \Rightarrow \dfrac{1}{2} = \dfrac{{\sqrt {\mu _2^2 - 1} }}{{\sqrt {\mu _1^2 - 1} }}$
Now on squaring both the sides, we get
$ \Rightarrow \dfrac{1}{4} = \dfrac{{\mu _2^2 - 1}}{{\mu _1^2 - 1}}$
So on doing the cross-multiplication, we get
$ \Rightarrow \mu _1^2 - 1 = 4\mu _2^2 - 4$
And solving the above equation by removing the square, we get
$ \Rightarrow 2{\mu _2} = \sqrt {\mu _1^2 + 3} $
Therefore, the relation between ${\mu _1}{\text{ and }}{\mu _2}$is$2{\mu _2} = \sqrt {\mu _1^2 + 3} $.
Hence, the option $\left( a \right)$is correct.
Note As we have seen that there is a very little bit of concept used for solving this question. The question more emphasizes the calculation and by using the properties of the refraction, we can answer it easily. We just have to use some Pythagoras rule and some trigonometric formulas to solve this.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

