
An electron of mass m with an initial velocity of \[\vec v = {v_0}\hat i\] (${v_0} > 0$) is in an electric field of $\vec E = - {E_0}\hat i$ (${E_0} > 0$ ) . It’s De Broglie wavelength initially is ${\lambda _0}$ , so what is the De Broglie wavelength of the electron after time $t$.
A) $\dfrac{{{\lambda _0}}}{{\left( {1 + \dfrac{{e{E_0}t}}{{m{v_0}}}} \right)}}$
B) ${\lambda _0}\left( {1 + \dfrac{{e{E_0}t}}{{m{v_0}}}} \right)$
C) ${\lambda _0}$
D) ${\lambda _0}t$
Answer
171.6k+ views
Hint: Any charged particle that exists in an electric field is bound to experience some force. Thus the charged particle will have acceleration. That means its velocity will vary from time to time.
Complete step by step solution:
What is De Broglie wavelength?
According to De Broglie everything in nature has a wave like nature. That means everything has a wavelength. For objects which are macroscopic in nature, their wavelengths are very small and so the wave nature is ignored. But for objects which are microscopic or considerably small the wavelength is comparable to the body size of this object and so the wave nature cannot be ignored.
So, according to De Broglie the wavelength of such bodies is inversely proportional to the momentum of the body. it is mathematically written as;
$\lambda $ $\alpha $ $\dfrac{1}{{mv}}$.
$ \Rightarrow \lambda = \dfrac{h}{{mv}}$ (Here, $h$ is the Planck's constant, $m$ is the mass and $v$ is the velocity of the body.)
So according to De Broglie the initial wavelength of the electron is given by;
${\lambda _0} = \dfrac{h}{{m{v_0}}}$ (Since, ${v_0}$ is the initial velocity) (Equation: 1)
Also, we know that when a charged particle is kept in an external electric field it experiences force.
So the electron will experience a force. This force will result in the acceleration of the electron. And, so the electron’s velocity will change.
So the electric force due to the external electric field is given by;
$F = q\left| {\vec E} \right| = \left( { - e} \right)\left( { - {E_0}} \right)$
$ \Rightarrow F = e{E_0}$ (Equation: 2)(Here, e is the charge of electron and ${E_0}$ is the magnitude of the electric field)
But, force is the product of mass and acceleration of the body;
$ \Rightarrow F = ma$ (Equation: 3)
Thus from equation 2 and equation 3 we get;
$ \Rightarrow ma = e{E_0}$
$ \Rightarrow a = \dfrac{{e{E_0}}}{m}$ (Here m is the mass of electron)(Equation: 4)
But we all know that;
$v = {v_0} + at$ (Here v is the velocity of electron after a time t)
$ \Rightarrow v = {v_0} + \dfrac{{e{E_0}}}{m}t$ (From equation: 4)(Equation: 5)
Thus by putting the values in the formula we get wavelength of electron at a time t as;
$\lambda = \dfrac{h}{{mv}}$
$ \Rightarrow \lambda = \dfrac{h}{{m\left( {{v_0} + \dfrac{{e{E_0}t}}{m}} \right)}}$
$ \Rightarrow \lambda = \dfrac{h}{{m{v_0} + e{E_0}t}}$
$ \Rightarrow \lambda = \dfrac{\dfrac{h}{mv_0}}{1+\dfrac{eE_0 t}{mv_0}}$
$ \Rightarrow \lambda = \dfrac{\lambda_0}{1+\dfrac{eE_0 t}{mv_0}}$
Thus, option A is correct.
Note: For macroscopic bodies, the size of these bodies is very huge so the wavelength is not comparable to the size of the body. Hence, their wave nature is neglected however De Broglie hypothesis is true for them also.
For microscopic particles the body size is comparable to their wavelengths and so their wave nature cannot be neglected.
Complete step by step solution:
What is De Broglie wavelength?
According to De Broglie everything in nature has a wave like nature. That means everything has a wavelength. For objects which are macroscopic in nature, their wavelengths are very small and so the wave nature is ignored. But for objects which are microscopic or considerably small the wavelength is comparable to the body size of this object and so the wave nature cannot be ignored.
So, according to De Broglie the wavelength of such bodies is inversely proportional to the momentum of the body. it is mathematically written as;
$\lambda $ $\alpha $ $\dfrac{1}{{mv}}$.
$ \Rightarrow \lambda = \dfrac{h}{{mv}}$ (Here, $h$ is the Planck's constant, $m$ is the mass and $v$ is the velocity of the body.)
So according to De Broglie the initial wavelength of the electron is given by;
${\lambda _0} = \dfrac{h}{{m{v_0}}}$ (Since, ${v_0}$ is the initial velocity) (Equation: 1)
Also, we know that when a charged particle is kept in an external electric field it experiences force.
So the electron will experience a force. This force will result in the acceleration of the electron. And, so the electron’s velocity will change.
So the electric force due to the external electric field is given by;
$F = q\left| {\vec E} \right| = \left( { - e} \right)\left( { - {E_0}} \right)$
$ \Rightarrow F = e{E_0}$ (Equation: 2)(Here, e is the charge of electron and ${E_0}$ is the magnitude of the electric field)
But, force is the product of mass and acceleration of the body;
$ \Rightarrow F = ma$ (Equation: 3)
Thus from equation 2 and equation 3 we get;
$ \Rightarrow ma = e{E_0}$
$ \Rightarrow a = \dfrac{{e{E_0}}}{m}$ (Here m is the mass of electron)(Equation: 4)
But we all know that;
$v = {v_0} + at$ (Here v is the velocity of electron after a time t)
$ \Rightarrow v = {v_0} + \dfrac{{e{E_0}}}{m}t$ (From equation: 4)(Equation: 5)
Thus by putting the values in the formula we get wavelength of electron at a time t as;
$\lambda = \dfrac{h}{{mv}}$
$ \Rightarrow \lambda = \dfrac{h}{{m\left( {{v_0} + \dfrac{{e{E_0}t}}{m}} \right)}}$
$ \Rightarrow \lambda = \dfrac{h}{{m{v_0} + e{E_0}t}}$
$ \Rightarrow \lambda = \dfrac{\dfrac{h}{mv_0}}{1+\dfrac{eE_0 t}{mv_0}}$
$ \Rightarrow \lambda = \dfrac{\lambda_0}{1+\dfrac{eE_0 t}{mv_0}}$
Thus, option A is correct.
Note: For macroscopic bodies, the size of these bodies is very huge so the wavelength is not comparable to the size of the body. Hence, their wave nature is neglected however De Broglie hypothesis is true for them also.
For microscopic particles the body size is comparable to their wavelengths and so their wave nature cannot be neglected.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

What is Hybridisation in Chemistry?

Wheatstone Bridge for JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
