
An electron is accelerated through a potential difference of $100V$. What is the de Broglie wavelength associated with it? To which part of the electromagnetic spectrum does this value of wavelength correspond?
Answer
154.2k+ views
Hint: Remember that, when an electron is accelerated through a potential difference, the work done will be in the form of the kinetic energy of the electron, and the wavelength changes with the potential difference, thus wavelength can be calculated.
Complete step by step solution:
Let’s define all the terms described in the question. It is said that the potential difference through which the electron is accelerated is $100V$. Here in the question, we are asked to find the de Broglie wavelength associated with it.
As there is an acceleration, there is a motion of the electron. For the motion of electrons there should be some amount of work done .
Work done is given by charge multiplied by the potential difference,
That is, Work done, $W = q \times {V_0}$…………… (1)
That is, $W = K.E.$
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
Here we are multiplying both denominator and numerator with $m$ for the further calculations, we get,
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
$ \Rightarrow W = \dfrac{1}{2}m{v^2} \times \dfrac{m}{m}$
$ \Rightarrow W = \dfrac{{{{(mv)}^2}}}{{2m}}$……………….. (2)
We know the momentum, $P = mv$
So equation (2) will become as given below,
$ \Rightarrow W = \dfrac{{{P^2}}}{{2m}}$…………………(3)
Comparing the two equations (1) and (2), we get,
$P = \sqrt {2mq{V_0}} $
We know the de Broglie wavelength is given by the equation,
$\lambda = \dfrac{h}{P}$
Where, $h$ is the Planck's constant
Applying the value of the momentum and all other terms in this equation, we will get,
$ \Rightarrow \lambda = \dfrac{h}{{\sqrt {2mq{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{6.63 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}} \times 1.6 \times {{10}^{ - 19}} \times 100} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {100} }}$
\[ \Rightarrow \lambda = 1.227\mathop A\limits^0 \]
That is the de Broglie wavelength of the electron when it is accelerated through a potential difference of $100V$, \[\lambda = 1.227\mathop A\limits^0 \]
This value of wavelength belongs to the X-ray part of the electromagnetic spectrum.
Note: The electromagnetic (EM) spectrum is the range of all types of electromagnetic radiation. The types of EM radiation that make up the electromagnetic spectrum are radio, microwaves, infrared light, visible, ultraviolet light, X-rays and gamma-rays.
Complete step by step solution:
Let’s define all the terms described in the question. It is said that the potential difference through which the electron is accelerated is $100V$. Here in the question, we are asked to find the de Broglie wavelength associated with it.
As there is an acceleration, there is a motion of the electron. For the motion of electrons there should be some amount of work done .
Work done is given by charge multiplied by the potential difference,
That is, Work done, $W = q \times {V_0}$…………… (1)
That is, $W = K.E.$
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
Here we are multiplying both denominator and numerator with $m$ for the further calculations, we get,
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
$ \Rightarrow W = \dfrac{1}{2}m{v^2} \times \dfrac{m}{m}$
$ \Rightarrow W = \dfrac{{{{(mv)}^2}}}{{2m}}$……………….. (2)
We know the momentum, $P = mv$
So equation (2) will become as given below,
$ \Rightarrow W = \dfrac{{{P^2}}}{{2m}}$…………………(3)
Comparing the two equations (1) and (2), we get,
$P = \sqrt {2mq{V_0}} $
We know the de Broglie wavelength is given by the equation,
$\lambda = \dfrac{h}{P}$
Where, $h$ is the Planck's constant
Applying the value of the momentum and all other terms in this equation, we will get,
$ \Rightarrow \lambda = \dfrac{h}{{\sqrt {2mq{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{6.63 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}} \times 1.6 \times {{10}^{ - 19}} \times 100} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {100} }}$
\[ \Rightarrow \lambda = 1.227\mathop A\limits^0 \]
That is the de Broglie wavelength of the electron when it is accelerated through a potential difference of $100V$, \[\lambda = 1.227\mathop A\limits^0 \]
This value of wavelength belongs to the X-ray part of the electromagnetic spectrum.
Note: The electromagnetic (EM) spectrum is the range of all types of electromagnetic radiation. The types of EM radiation that make up the electromagnetic spectrum are radio, microwaves, infrared light, visible, ultraviolet light, X-rays and gamma-rays.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Wheatstone Bridge for JEE Main Physics 2025

An uncharged sphere of metal is placed inside a charged class 12 physics JEE_Main

Other Pages
The force of interaction of two dipoles if the two class 12 physics JEE_Main

JEE Advanced 2025 Revision Notes for Mechanics

Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

A signal of 5kHz frequency is amplitude modulated on class 12 physics JEE_Main

Three charges sqrt 2 mu C2sqrt 2 mu Cand sqrt 2 mu class 12 physics JEE_Main

The potential of A is 10V then the potential of B is class 12 physics JEE_Main
