
An electron is accelerated through a potential difference of $100V$. What is the de Broglie wavelength associated with it? To which part of the electromagnetic spectrum does this value of wavelength correspond?
Answer
141k+ views
Hint: Remember that, when an electron is accelerated through a potential difference, the work done will be in the form of the kinetic energy of the electron, and the wavelength changes with the potential difference, thus wavelength can be calculated.
Complete step by step solution:
Let’s define all the terms described in the question. It is said that the potential difference through which the electron is accelerated is $100V$. Here in the question, we are asked to find the de Broglie wavelength associated with it.
As there is an acceleration, there is a motion of the electron. For the motion of electrons there should be some amount of work done .
Work done is given by charge multiplied by the potential difference,
That is, Work done, $W = q \times {V_0}$…………… (1)
That is, $W = K.E.$
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
Here we are multiplying both denominator and numerator with $m$ for the further calculations, we get,
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
$ \Rightarrow W = \dfrac{1}{2}m{v^2} \times \dfrac{m}{m}$
$ \Rightarrow W = \dfrac{{{{(mv)}^2}}}{{2m}}$……………….. (2)
We know the momentum, $P = mv$
So equation (2) will become as given below,
$ \Rightarrow W = \dfrac{{{P^2}}}{{2m}}$…………………(3)
Comparing the two equations (1) and (2), we get,
$P = \sqrt {2mq{V_0}} $
We know the de Broglie wavelength is given by the equation,
$\lambda = \dfrac{h}{P}$
Where, $h$ is the Planck's constant
Applying the value of the momentum and all other terms in this equation, we will get,
$ \Rightarrow \lambda = \dfrac{h}{{\sqrt {2mq{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{6.63 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}} \times 1.6 \times {{10}^{ - 19}} \times 100} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {100} }}$
\[ \Rightarrow \lambda = 1.227\mathop A\limits^0 \]
That is the de Broglie wavelength of the electron when it is accelerated through a potential difference of $100V$, \[\lambda = 1.227\mathop A\limits^0 \]
This value of wavelength belongs to the X-ray part of the electromagnetic spectrum.
Note: The electromagnetic (EM) spectrum is the range of all types of electromagnetic radiation. The types of EM radiation that make up the electromagnetic spectrum are radio, microwaves, infrared light, visible, ultraviolet light, X-rays and gamma-rays.
Complete step by step solution:
Let’s define all the terms described in the question. It is said that the potential difference through which the electron is accelerated is $100V$. Here in the question, we are asked to find the de Broglie wavelength associated with it.
As there is an acceleration, there is a motion of the electron. For the motion of electrons there should be some amount of work done .
Work done is given by charge multiplied by the potential difference,
That is, Work done, $W = q \times {V_0}$…………… (1)
That is, $W = K.E.$
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
Here we are multiplying both denominator and numerator with $m$ for the further calculations, we get,
$ \Rightarrow W = \dfrac{1}{2}m{v^2}$
$ \Rightarrow W = \dfrac{1}{2}m{v^2} \times \dfrac{m}{m}$
$ \Rightarrow W = \dfrac{{{{(mv)}^2}}}{{2m}}$……………….. (2)
We know the momentum, $P = mv$
So equation (2) will become as given below,
$ \Rightarrow W = \dfrac{{{P^2}}}{{2m}}$…………………(3)
Comparing the two equations (1) and (2), we get,
$P = \sqrt {2mq{V_0}} $
We know the de Broglie wavelength is given by the equation,
$\lambda = \dfrac{h}{P}$
Where, $h$ is the Planck's constant
Applying the value of the momentum and all other terms in this equation, we will get,
$ \Rightarrow \lambda = \dfrac{h}{{\sqrt {2mq{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{6.63 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}} \times 1.6 \times {{10}^{ - 19}} \times 100} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {{V_0}} }}$
$ \Rightarrow \lambda = \dfrac{{12.27}}{{\sqrt {100} }}$
\[ \Rightarrow \lambda = 1.227\mathop A\limits^0 \]
That is the de Broglie wavelength of the electron when it is accelerated through a potential difference of $100V$, \[\lambda = 1.227\mathop A\limits^0 \]
This value of wavelength belongs to the X-ray part of the electromagnetic spectrum.
Note: The electromagnetic (EM) spectrum is the range of all types of electromagnetic radiation. The types of EM radiation that make up the electromagnetic spectrum are radio, microwaves, infrared light, visible, ultraviolet light, X-rays and gamma-rays.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
