
An electron and a photon, each has a de-Broglie wavelength of $1.2A°$. The ratio of their energies will be:
A) $1:1$
B) $1:10$
C) $1:100$
D) $1:1000$
Answer
217.8k+ views
Hint: The de-Broglie equation states that a matter can act as waves as well as particles same as that of light and radiation. Every moving particle has a wavelength. This equation is one of the important equations that is used to define the properties of matter.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

