Answer
Verified
367.6k+ views
- Hint: First, we will find out the kinetic energies of both the $\alpha $ and the proton respectively with the formula $KE = \dfrac{1}{2}m{v^2}$. Then we will solve the equations further and find out the equation for momentums of both the particles. Refer to the solution below.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main