
An $\alpha $ particle and a proton are accelerated from rest by the same potential. Find the ratio of their de-Broglie wavelength.
Answer
504.1k+ views
- Hint: First, we will find out the kinetic energies of both the $\alpha $ and the proton respectively with the formula $KE = \dfrac{1}{2}m{v^2}$. Then we will solve the equations further and find out the equation for momentums of both the particles. Refer to the solution below.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Formula used: $KE = \dfrac{1}{2}m{v^2}$, $p = mv$, $\lambda = \dfrac{h}{p}$.
Complete step-by-step solution:
Let the mass of $\alpha $particle be ${m_\alpha }$.
Let the mass of the proton be ${m_p}$.
Let the velocity of $\alpha $ particle be ${v_\alpha }$.
Let the velocity of the proton be ${v_p}$.
Now, as we know the formula for kinetic energy is $KE = \dfrac{1}{2}m{v^2}$.
Kinetic energy of $\alpha $ particle will be-
$ \Rightarrow K{E_\alpha } = \dfrac{1}{2}{m_\alpha }{v_\alpha }^2$
Multiplying the numerator and denominator by ${m_\alpha }$, we get-
$ \Rightarrow K{E_\alpha } = {\dfrac{{\left( {{m_\alpha }{v_\alpha }} \right)}}{{2{m_\alpha }}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_\alpha } = {\dfrac{{\left( {{p_\alpha }} \right)}}{{2{m_\alpha }}}^2} \\
\\
\Rightarrow {p_\alpha }^2 = 2{m_\alpha }{\left( {KE} \right)_\alpha } \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
$
Kinetic energy of proton will be-
$ \Rightarrow K{E_p} = \dfrac{1}{2}{m_p}{v_p}^2$
Multiplying the numerator and denominator by ${m_p}$, we get-
$ \Rightarrow K{E_p} = {\dfrac{{\left( {{m_p}{v_p}} \right)}}{{2{m_p}}}^2}$
As we know that the formula for momentum is $p = mv$. So, from the above equation we get-
$
\Rightarrow K{E_p} = {\dfrac{{\left( {{p_p}} \right)}}{{2{m_p}}}^2} \\
\\
\Rightarrow {p_p}^2 = 2{m_p}{\left( {KE} \right)_p} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
$
Now, the work done in accelerating the proton and the $\alpha $ particle will be equal to the kinetic energy acquired. As we know, $W = qV$. Potential difference is the same in both cases. So-
Kinetic energy of $\alpha $ particle in terms of charge and potential difference-
$ \Rightarrow K{E_\alpha } = {q_\alpha }V$
Kinetic energy of $p$ particle in terms of charge and potential difference-
$ \Rightarrow K{E_p} = {q_p}V$
Putting the above values of kinetic energy into the values of momentums, we get-
For $\alpha $ particle-
$
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }{{\left( {KE} \right)}_\alpha }} \\
\\
\Rightarrow {p_\alpha } = \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} \\
$
For proton-
$
\Rightarrow {p_p} = \sqrt {2{m_p}{{\left( {KE} \right)}_p}} \\
\\
\Rightarrow {p_p} = \sqrt {2{m_p}\left( {{q_p}V} \right)} \\
$
The formula for de-Broglie wavelength is $\lambda = \dfrac{h}{p}$. Putting the values of momentum from above one by one, we get-
For $\alpha $ particle-
$ \Rightarrow {\lambda _\alpha } = \dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}$
For proton-
$ \Rightarrow {\lambda _p} = \dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}$
Finding their ratios, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\dfrac{h}{{\sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }}}}{{\dfrac{h}{{\sqrt {2{m_p}\left( {{q_p}V} \right)} }}}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{h \times \sqrt {2{m_p}\left( {{q_p}V} \right)} }}{{h \times \sqrt {2{m_\alpha }\left( {{q_\alpha }V} \right)} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
$
As we know that the mass of $\alpha $ particle is 4 times the mass of proton and the charge of $\alpha $ particle is 2 times the charge of proton, we get-
$
\Rightarrow {m_\alpha } = 4{m_p} \\
\\
\Rightarrow {q_\alpha } = 2{q_p} \\
$
Putting the values in the above ratio, we will have-
$
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {{m_\alpha }{q_\alpha }} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{{\sqrt {{m_p}{q_p}} }}{{\sqrt {4{m_p}2{q_p}} }} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \sqrt {\dfrac{1}{4} \times \dfrac{1}{2}} \\
\\
\Rightarrow \dfrac{{{\lambda _\alpha }}}{{{\lambda _p}}} = \dfrac{1}{{2\sqrt 2 }} \\
$
Thus, the ratio of ${\lambda _\alpha }:{\lambda _p} = 1:2\sqrt 2 $.
Note: It is said that matter has a dual nature of wave-particles. de Broglie waves, named after the pioneer Louis de Broglie, is the property of a material object that differs in time or space while acting like waves. It is likewise called matter-waves. It holds extraordinary likeness to the dual nature of light which acts as particle and wave, which has been demonstrated experimentally.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

