
When an $\alpha $ particle of mass $m$ moving with velocity $v$ bombarded on a heavy nucleus of charge $Ze$, its distance of closest approach from the nucleus depends in $m$ as:
(A) $\dfrac{1}{m}$
(B) $\dfrac{1}{{\sqrt m }}$
(C) $\dfrac{1}{{{m^2}}}$
(D) $m$
Answer
232.8k+ views
Hint the energy can neither be created nor destroyed, the energy can be transferred from one form of the energy to the other form of the energy. This can be given by the law of conservation of energy. Here, the kinetic energy is converted to the potential energy.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

