
When an $\alpha $ particle of mass $m$ moving with velocity $v$ bombarded on a heavy nucleus of charge $Ze$, its distance of closest approach from the nucleus depends in $m$ as:
(A) $\dfrac{1}{m}$
(B) $\dfrac{1}{{\sqrt m }}$
(C) $\dfrac{1}{{{m^2}}}$
(D) $m$
Answer
216k+ views
Hint the energy can neither be created nor destroyed, the energy can be transferred from one form of the energy to the other form of the energy. This can be given by the law of conservation of energy. Here, the kinetic energy is converted to the potential energy.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

