
Acute angle between the lines represented by the $({x^2} + {y^2})\sqrt 3 = 4xy$ is
A. $\dfrac{\pi }{6}$
B. $\dfrac{\pi }{4}$
C. $\dfrac{\pi }{3}$
D. None of these
Answer
163.2k+ views
Hint: We are given two lines in this case, and we must determine the acute angle between them. They are in slope intercept form as\[y = mx + c\] where m represents the slope of the line, we shall first determine its slope. The angle between the two lines will then be determined using the formula \[tan\theta {\rm{ }} = \;\frac{{{m_2} - {m_1}}}{{1 + {m_1} \cdot {m_2}}}\] after we have determined the slope of both lines. By resolving this, we shall obtain the result.
Formula Used:The tangent function's formula can be used to determine the acute angle between the lines.\[tan\theta {\rm{ }} = \;\frac{{{m_1} - {m_2}}}{{1 + {m_1} \cdot {m_2}}}\]
Complete step by step solution: Here, it is given the equation that
\[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
And we should determine the acute angle between the lines represented by \[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
Now, let us write the two lines that represent the given equation, we have
\[y - {m_1}x = 0\]
AND
\[y - {m_2}x = 0\]
Now, we have to write the combined equation of the above two lines, we get
\[\left( {y - {m_1}x} \right)\left( {y - {m_2}x} \right) = 0\]
Now, we have to multiply both the equations, we have
\[{y^2} - \left( {{m_1} + {m_2}} \right)\left( {xy} \right) + {m_1}{m_2}{x^2} = 0\]------- (1)
Now, we have to consider the given equation
\[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
Let us write the above equation in quadratic form, we get
\[\left( {{x^2} + {y^2}} \right) - \frac{4}{{\sqrt 3 }}xy = 0\]
Now, we have to compare the above equation with the equation (1), we have
\[{m_1} + {m_2} = \frac{4}{{\sqrt 3 }}\]
Since, we already know the condition that,
\[{m_1}{m_2} = 1\]
Therefore, we have
\[{\left( {{m_1} - {m_2}} \right)^2} = {\left( {{m_1} + {m_2}} \right)^2} - 4{m_1}{m_2}\]
Now, we have to substitute the values of each term, we have
\[ \Rightarrow {\left( {{m_1} - {m_2}} \right)^2} = \frac{{16}}{3} - 4\]
On simplifying the above equation, we get
\[ \Rightarrow {\left( {{m_1} - {m_2}} \right)^2} = \frac{4}{3}\]
Now, we have to remove the square by taking modulus, we get
\[\left| {{m_1} - {m_2}} \right| = \frac{2}{{\sqrt 3 }}\]
Now, we have an acute angle between these two lines, we have
\[\tan \alpha = \left| {\frac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\]
Now, we have to substitute the values of each term, we have
\[\tan \alpha = \left| {\frac{{\frac{2}{{\sqrt 3 }}}}{{1 + 1}}} \right| = \frac{1}{{\sqrt 3 }}\]
By trigonometry identity, we can write the value as below
\[\tan \alpha = \tan \left( {\frac{\pi }{6}} \right)\]
On cancelling the similar terms from the above equation, we get
\[ \Rightarrow \alpha = \frac{\pi }{6}\]
Therefore, acute angle between the lines represented by \[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\] is \[\frac{\pi }{6}\]
Hence, the option A is correct
Note: Students often tend to make mistake in these types of problems because it includes formula to remember. Here, one should keep in mind that calculation part and applications of formulas are very important in order to get the desired answer. Make sure you won't commit this error since sometimes even examiners are quite savvy and will provide you options where you can observe that obtuse angle and mark it as the correct answer.
Formula Used:The tangent function's formula can be used to determine the acute angle between the lines.\[tan\theta {\rm{ }} = \;\frac{{{m_1} - {m_2}}}{{1 + {m_1} \cdot {m_2}}}\]
Complete step by step solution: Here, it is given the equation that
\[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
And we should determine the acute angle between the lines represented by \[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
Now, let us write the two lines that represent the given equation, we have
\[y - {m_1}x = 0\]
AND
\[y - {m_2}x = 0\]
Now, we have to write the combined equation of the above two lines, we get
\[\left( {y - {m_1}x} \right)\left( {y - {m_2}x} \right) = 0\]
Now, we have to multiply both the equations, we have
\[{y^2} - \left( {{m_1} + {m_2}} \right)\left( {xy} \right) + {m_1}{m_2}{x^2} = 0\]------- (1)
Now, we have to consider the given equation
\[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\]
Let us write the above equation in quadratic form, we get
\[\left( {{x^2} + {y^2}} \right) - \frac{4}{{\sqrt 3 }}xy = 0\]
Now, we have to compare the above equation with the equation (1), we have
\[{m_1} + {m_2} = \frac{4}{{\sqrt 3 }}\]
Since, we already know the condition that,
\[{m_1}{m_2} = 1\]
Therefore, we have
\[{\left( {{m_1} - {m_2}} \right)^2} = {\left( {{m_1} + {m_2}} \right)^2} - 4{m_1}{m_2}\]
Now, we have to substitute the values of each term, we have
\[ \Rightarrow {\left( {{m_1} - {m_2}} \right)^2} = \frac{{16}}{3} - 4\]
On simplifying the above equation, we get
\[ \Rightarrow {\left( {{m_1} - {m_2}} \right)^2} = \frac{4}{3}\]
Now, we have to remove the square by taking modulus, we get
\[\left| {{m_1} - {m_2}} \right| = \frac{2}{{\sqrt 3 }}\]
Now, we have an acute angle between these two lines, we have
\[\tan \alpha = \left| {\frac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\]
Now, we have to substitute the values of each term, we have
\[\tan \alpha = \left| {\frac{{\frac{2}{{\sqrt 3 }}}}{{1 + 1}}} \right| = \frac{1}{{\sqrt 3 }}\]
By trigonometry identity, we can write the value as below
\[\tan \alpha = \tan \left( {\frac{\pi }{6}} \right)\]
On cancelling the similar terms from the above equation, we get
\[ \Rightarrow \alpha = \frac{\pi }{6}\]
Therefore, acute angle between the lines represented by \[\left( {{x^2} + {y^2}} \right)\sqrt 3 = 4xy\] is \[\frac{\pi }{6}\]
Hence, the option A is correct
Note: Students often tend to make mistake in these types of problems because it includes formula to remember. Here, one should keep in mind that calculation part and applications of formulas are very important in order to get the desired answer. Make sure you won't commit this error since sometimes even examiners are quite savvy and will provide you options where you can observe that obtuse angle and mark it as the correct answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

JEE Main 2025 Cut-off For NIT Andhra Pradesh

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
